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Abstract

Non-photorealistic rendering (NPR) is a research field that has been studied since the 90s
and consists of algorithms and methods that are able to render images or 3D models in a
way that they appear artificial for example like a painterly drawing. The Goal of NPR is
to computer generate these artificial effects in order to be able to apply these methods for
example better visualize or draw images such as the illustration of buildings. Virtual reality
(VR) is a technology that consists of methods to generate a virtual environment that is
computed by a computer but still lets the user think he is part of this generated world. The
user should also interact with this virtual environment. One of the fields where VR is used
is to illustrate buildings or in the automotive industry for prototyping of new car models.
This thesis analyses NPR algorithms and methods in the context of VR. Since NPR in context
of VR is not researched very well this thesis analysis algorithms and methods of NPR and
applies them to VR in order to evaluate there ability to contribute to VR by analyzing and
benchmarking those. The thesis describes the implementation of NPR algorithms inside a
prototype application and there benchmark results by using standard models in computer
graphics. Besides these topics the results are presented and compared to each other.
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Abstract

Nicht fotorealistisches rendering (NPR) ist ein wissenschaftliches Gebiet das seit den 90er
Jahren erforscht wird. NPR besteht aus Algorithmen und Methoden die es ermöglichen
Bilder und 3D Modelle so zu rendern, dass diese abstrakt und künstlich wirken wie zum
Beispiel ein Gemälde. Das Ziel von NPR ist es diese Methoden mit Hilfe eines Rechners
zu generieren damit diese angewendet werden können, z.B. in der Visualisierung oder für
digitale Zeichnungen wie etwa das darstellen von Gebäuden. Virtuelle Realität (VR) ist eine
Technology mit welcher es möglich ist eine Virtuelle Umgebung zu erzeugen, welche von
einem Computer erzeugt wird. Der Benutzer dieser Umgebung soll denken, dass dieser ein
Teil davon ist und ebenso sollte er mit der Umgebung interagieren. Ein Anwendungsgebiet
für VR ist ebenfalls das Darstellen von Gebäuden oder auch in der Automobil Industrie wo
es für Prototypen neuer Fahrzeugmodelle genutzt wird.
Da NPR in Verbindung mit VR bisher nicht sehr viel erforscht wurde wird diese Thesis
Algorithmen und Methoden aus dem Gebiet NPR nutzen und diese in VR anwenden. Ziel
ist es zu evaluieren wie diese VR unterstützen indem sie analysiert und verglichen werden.
In dieser Thesis wird neben Analyse und Vergleich auch die Implementierung der NPR Algo-
rithmen und Methoden innerhalb eines Prototypen beschrieben. Neben der Implementierung
werden die Messergebnisse, welche beim Darstellen von standard Modellen im Bereich der
Computer Grafik gemessen wurden analysiert.
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1. Introduction

Non-photorealistic rendering (NPR) techniques have been researched beginning in the early
90s, which resulted in a wide range of different methods, algorithms and scientific research.
One of the first persons researching NPR was Paul Haeberli, with his publication about
image stylization “Paint by numbers: abstract image representations“ [Hae90]. However,
(VR) itself was researched since the 60s, where Ivan E. Sutherland published his first work
about a conceptual VR display “The Ultimate Display“ [Sut65]. Only a few publications
combine both worlds the one of NPR and the world of VR. This thesis describes several NPR
methods, where the focus is on NPR effects that can be applied to VR, since VR requires
fluent image rendering. NPR targets the opposite of photorealistic rendering which tries to
computer generate (render) pictures of 3D data in a way that it looks similar or equal to
the real world for example a car that drives over a bridge. Where NPR targets to render
images of 3D data in a way that they look artificial for example an image that looks like
drawn with the pencil.
One of the main parts of this thesis is to evaluate which methods can be applied to VR from
the technical point of view and which of these methods contribute to VR and visualization in
a way that improves recognition of details in an rendering, for example highlighting a specific
part of the image. Furthermore, VR has some requirements that have to be respected. First
of all, when rendering images in VR they need to be rendered for each eye in real-time to
generate a stereo 3D effect for the observing person. Second is that depending on the display
or environment used, synchronization of multiple displays can cause problems or increase
computation time. Besides these issues, it is necessary to check, if displays overlap, that the
images are compatible to each other in order to not distract the user with gaps in between
the images.
The thesis describes for each of the NPR effects that can be applied how these can be used and
how they work in VR. Besides that, the main focus of the thesis is to integrate these effects
into a multi-display virtual environment for example the Audio-Visual Automatic Virtual
Environment short CAVE1, which is used for visualization and based on the work “The
CAVE: audio visual experience automatic virtual environment“ from Carolina Cruz-Neira
[CNSD+92]. The CAVE itself consists, besides the multiple displays, of multiple computer
systems where each of these systems also called render nodes display its renderbuffer onto
one display. This makes it necessary to synchronize data between each of the nodes.

1.1. Motivation

The topic of NPR is widely spread and also heavily applied in the game industry to create
state of the art games for the consumers. Also visualization is often using NPR effects to
enhance immersion of the visualized data or models in order to assist the human eye and

1CAVETMis a registered trademark of the University of Illinois Board of Trustee. The term is used in the
context of this thesis to generically refer to CAVEsTMand CAVE-like displays.
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1. Introduction

observer. An example for non-photorealistic visualization can be the artificial rendering of
a new shopping mall to illustrate roughly how it should look like in the end. Since VR is
getting more attention in the past years the combination of both worlds is very interesting,
but not researched very well. This fact makes it very interesting to research as well as finding
and solving problems related to non-photorealism and VR. Besides that, NPR effects can
generate very appealing effects. The main parts of these thesis are to evaluate current
NPR effects and algorithms that can be applied to VR environments, in detail which can
be applied to multi-side virtual reality environments such as the CAVE, with the focus on
real-time and applying those on different data sets. Besides that the topic of this thesis is to
compare these algorithms that can be applied. One of the main goals is to focus on effects
and algorithms that work in general on any kind of 3D data that can be visualized with
OpenGL and standard computer graphics hardware. Algorithms that need pre-processing
or pre-computation will be left out since they would add additional effort when trying to use
them for general visualization, since the goal of the thesis is to evaluate a set of plug and
play non-photorealistic effects for VR and visualization. More precisely, this thesis discusses:

• Analyzing NPR algorithms and methods

• Implementing a prototype VR application using NPR algorithms

• Benchmarking the NPR algorithms

• Implement plug and play NPR algorithms

• Discussing the usage of those NPR algorithms in VR

1.2. Overview

This Section gives a short overview about the structure and contents of this thesis which is
as follows:

• Chapter 2 discusses related work regarding VR and NPR as well as research that is
combining both. It consists of fundamentals, rendering and image based methods,
NPR perception and viszualization.

• Chapter 3 describes the concept of the thesis by pointing out the structure of the
application, the rendering algorithms and effects. Besides these points the chapter
also points out how measurement is done.

• Chapter 4 gives an overview and details about the implementation of the prototyping
software that was used to implement and evaluate the algorithms

• Chapter 5 lists and analyses the measurement results. The algorithms are compared
to the others.

• The final Chapter 6 summarizes the results of the thesis and gives examples for future
or upcoming work to continue the topic.
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2. Fundamentals and Related Work

Related work in the scope of non-photorealistic rendering (NPR) is diverse and full of topics
and research about cell shading, line drawing and various other 3D as well as 2D rendering
methods. While in the combination with virtual reality (VR) there are only a few studies
which for example describe stereoscopic 3D visualization. The following section will sum-
marize rendering based methods and image based methods found in the context of NPR as
well as giving a short introduction about fundamentals in rendering and NPR. Besides that
it gives some introduction to NPR perception as well as NPR in context of visualization.

2.1. Fundamentals

This section should give a short overview about the most common techniques in VR and
NPR. It describes their purpose as well as shortly explains what these methods are doing.

2.1.1. Virtual Reality

VR designates a technology where a computer generates a virtual world, in which the user
feels to be part of. The virtual world is computer generated in real-time and should offer
functionality to interact. The interaction is needed in order to let the user feel he is part of
the world and not only watching it, like a cinema movie. Besides real-time and interaction
also stereoscopic representation is needed that the user can see a 3D computer generated
scene. Virtual reality (VR) can be used with various hardware, for example the CAVE or
head-mounted displays. Head-mounted displays are becoming more and more attention and
available also for private users, where a CAVE is usually expensive and only available for
research and the industry.

2.1.2. Cartoon Shading or Tone Shading

Cartoon or Tone shading means to generate a cartoon style image by applying specific
rendering techniques. Most common is that at a distinct point while applying lightning the
shading of the scene is strongly changed. This results in hard gradients which are usually
used when drawing cartoon scenes. An example can be seen in figure 2.5a. One of the
works describing Cartoon or Tone shading is “Stylized Rendering Techniques for Scalable
Real-Time 3D Animation“ from Adam Lake et al. [LMHB00]

2.1.3. Edge Detection

Edge detection is used to find edges, either in 3D space or image space depending on the
algorithm used. The basic idea behind these algorithms is to find important edges extract
them and make them usable for further computation. The result of these algorithms is often
used to enhance already rendered images to achieve a cartoon style image or a painterly

3



2. Fundamentals and Related Work

image. A publication about edge detection can be found in “A 3x3 Isotropic Gradient
Operator for Image Processing“ [SF68] which describes the Sobel edge detector.

2.1.4. Edge Flow Image and Flow Field

Edge flow image and flow fields are used to detect in which direction edges and or strokes
are heading. Both of them describe in which direction a former edge or stroke was drawn or
could be drawn when applying brush strokes or similar techniques on them. These techniques
are used to retrieve a more realistic effect which takes the direction into account.

2.1.5. Stereoscopic Rendering

The term stereoscopic rendering means to render an image of a 3D scene twice one time
for each eye. This is the common method to produce a 3D effect for our human eyes.
For each eye the scene is rendered with there particular view to emulate how we see the
world. Rendering stereo 3D can be achieved with three different methods first with parallel
projection where the image is rendered with an offset between two camera perspectives. The
second method is the toed-in method which also uses an offset between the cameras but
additionally the cameras are pointing to towards an single focal point. The last method
is the off-axis method where the camera frustum is non-symmetric but both cameras are
pointing to the projection plane in parallel. For Stereoscopic Rendering the off-axis method
should be used since researched showed that this generates the best 3D effect for the human
eyes.

2.1.6. Multipass Rendering

Multipass rendering consists of multiple rendering passes sequentially or combining the re-
sults of different rendering passes. The common use cases are to render the scene into a
texture and then apply a second rendering pass onto that texture for example edge enhance-
ment. In the final pass the result of the first and second pass are combined to have a rendered
scene with enhanced edges. Figure 2.1 shows a more complex multipass rendering.

Figure 2.1.: Multipass rendering showcase
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2.2. Rendering Based Methods

2.1.7. 3D Textures and Brush Textures

When rendering scenes often textures are used to draw complex structure onto 3D meshes,
3D textures are a special type of textures for example these textures do not only have 2-axes
like usual textures but one more, this can be used to store different data in each level of
the 3rd axis or to optimize the rendering process without wasting resources. Brush textures
are a special usage form of 3D textures, those are used when it is needed to draw brush
strokes in the scene by using multiple textures that consist of brush strokes themselves. In
combination with 3D textures each level in the 3rd dimension could have different brushes
depending on the strength of the stroke.

2.2. Rendering Based Methods

Rendering based methods usually work on 3D data as a source for example the 3D mesh which
should be rendered. The outcome of these rendering methods can be a fully rendered scene
which has no need for change or adaptions anymore. In case and if required the rendering
based methods can also be used as pre processing step to the image based methods (see
section 2.3).

2.2.1. Real-Time Methods

The paper “Non-Photorealistic Virtual Environments “ by Allison W. Klein et al. from the
year 2000 [KLK+00], describes a real-time virtual environment NPR topic. The the paper
introduces a method on how to use NPR filters on images of real or artificial environments,
to render a virtual environment. Besides that, the algorithm also draws 3D lines into the
virtual environment, which enhances the NPR effect by adding extra digital information
which gives the impression of a drawn picture.
The main method which is described in the paper is the computation of non-photorealistic
textures from photographs, that largely avoid seams in the final image. The result is that
the whole scene looks like drawn, by using filters to emulate van Gogh style, pastel or for
example watercolor. The method in this article delivers great results in the final rendering
see figure 2.2, but it needs a lot of offline pre-processing to apply the filters, before the actual
rendering.

Figure 2.2.: A NPR virtual environment [KLK+00]

The next work to mention is the “Hardware-Accelerated Parallel Non-Photorealistic Vol-
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2. Fundamentals and Related Work

ume Rendering“ by Eric B. Lum et al. [LM02]. It describes the efficient combination of
different rendering techniques such as tone shading, silhouette rendering, gradients and the
use of color cues. The rendering examples from figure 2.3 show that for example computed
tomography scans can be rendered and visualized very well by using these rendering tech-
niques. The example combines tone shading and adds also a silhouette around, after these
steps gradients are added and color cues to receive a semi transparent effect. To compute
such renderings, the capabilities of consumer graphics hardware are used, for example 3D
textures. With 3D textures multiple rendering passes can be avoided.
In the article a pc cluster is used to compute the images and to run it fast enough for real-
time modifications such as translation, rotation etc. Since the hardware used is from the
2000s it should be possible to compute these effects on an up-to-date pc nowadays.

Figure 2.3.: Rendered computer tomography scan [LM02]

“Real-Time Pencil Rendering“ from Hyunjun Lee et al. [LKL06] combines run-time pro-
cessing and pre-processing together to achieve real-time renderings which look like pencil
drawings. The basic idea behind is the combination of multiple steps together to generate
the final result. Parts of these steps are contour detection where a fast image based approach
is used. Next step is shaking the contour and then draw it multiple times to achieve the
effect that the image is drawn with multiple strokes. Shaking the contour means to draw
the contour not plain but in a way a human would draw it with his hand.
Then the result is combined with the offline generated pencil and contour textures, as well as
with the paper normal texture. A paper normal texture is similar to an normal texture but
it specifically consists of normals that can generate a paper effect. The paper normal texture
and the pencil texture are applied to the interior to simulate pencil shading. The contour
texture is applied to the extracted contour to imitate pencil drawn contours. This real-time
approach could be used also in VR since it can be computed fast, as long as for each scene
to render the necessary pre-processing steps are done. One example of this method can be
seen in figure 2.4

The the paper “Stylized Rendering Techniques for Scalable Real-Time 3D Animation“
from Adam Lake et al. [LMHB00] describes a combination of real-time rendering techniques
which support 3D animations including 3D rendering.
First of all the work starts with cartoon shading. Cartoon shading makes use of the dot

6



2.2. Rendering Based Methods

Figure 2.4.: Real-time pencil rendering [LKL06]

product between the face normal and the light vector to shade the model. If this equation
2.1 results in a value of 0.5 or less the pixel is shaded darker than the ones above which
results in a shadow border at 0.5 see figure 2.5a

~L · ~N (2.1)

Another method applied in the paper is “Pencil Sketch Shading“ it uses the same equation
2.1 to choose a texture with the required density. The textures represent pencil strokes,
they are generated by randomly selecting different kinds of strokes. All of these textures are
generated in different densities. The next rendering technique used is silhouette detection
which means the silhouette of a model is detected and drawn to the screen. The approach
used to achieve this effect is the algorithm that tries to find faces which share their edge
while one of them is facing to the front and the other is facing to the back, this is done by
using the normals and checking if these faces are facing in opposite directions. In the next
step the edges are rendered as stylized edges, the basic approach consists of three textures
one having a rightward stroke, the second having a straight stroke and the last having a
leftward stroke.
During rendering of the edge it is decided which of these three textures to take, by checking
which angle the current edge to render and its successor edge together have, for an example
see figure 2.5b. The last technique described is used to draw motion lines to support moving
of an object. The algorithm chooses n vertices in a pre-processing step which will be the
vertices to start the motion lines. The algorithm keeps track of the motion of an object
and renders lines from the past positions of these n vertices. The algorithms described in
publication are commonly used already and can also be applied in real-time. Since the results
achieved fluent results already on a Pentium III c©computer system these should be usable
also in virtual reality.

A good composition of NPR effects can be found in “Post-processing NPR Effects for Video
Games“ from Milán Magdics et al. [MSGS13]. The paper describes different approaches of
edge detection and rendering as well as texture simplification which means textures of objects
are simplified by removing details. Besides these methods the shadows are recolored by
extracting them and increasing the contrast. Also depth saturation with varying abstraction
levels is described which is used to enhance the depth perception as well as steers the focus on
important things. As last points blur effects, contour thickness and color palette modification
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(a) Cartoon shading (b) Pencil sketch shading

Figure 2.5.: Examples of stylized rendering techniques [LMHB00]

is explained. Color palette modification is in detail described as an effect where the colors
are modified for example by applying the same atmosphere of one image to the output of
the rendering pipeline. This results in a rendered picture which has warm colors if a photo
of a sunrise was used. An example of palette modification, contour modifications plus edge
detection can be seen in figure 2.6.

Figure 2.6.: Car rendering [MSGS13]

Also in augmented reality a NPR topic can be found. The publication from Michael
Haller “Photorealism or/and Non-Photorealism in Augmented Reality“ [Hal04] shows how
to use cartoon shading and painterly rendering in augmented reality. Haller applies this
rendering techniques in his example to an 3D model of a Van Gogh painting. The people
are able to look deeper into the painting with the 3D model. In the algorithm for cartoon
shading a two-valued step function is applied to replace the diffuse and the specular color
these values are calculated with the help of a 1-dimensional texture. The basic idea behind
is the same as in “Post-processing NPR Effects for Video Games“ [MSGS13]. To achieve
the painterly rendering effect, the algorithm uses three steps, the first is a pre-processing
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step then a first rendering pass and a second rendering pass. In the pre-processing step
the mesh of the 3D model is used to place particles in world space. The first rendering
pass is used to render the color and the depth texture of the 3D model. A depth texture
consists of depth information for each pixel on the screen which means that different color
shows different depth. Before it comes to the second final rendering pass culling is applied
to remove unnecessary information. The second pass generates billboards for each pixel and
applies the stroke textures onto them to render the final image. To retrieve the orientation
of the strokes the normals of the surface are used. The last pass is the most expensive part
of the rendering process, however it shows good painterly results see figure 2.7. In this work
about augmented reality are no results documented about performance, but since augmented
reality heavily depends on real-time processing and also the paper states that the focus was
real-time it could be also useful in VR if it can handle processing of a complete virtual world.

Figure 2.7.: Painterly rendering in augmented reality [Hal04]

A good way to draw silhouettes is described in “Coherent Stylized Silhouettes“ from
Robert D. Kalnins [KDMF03] the basic work shows how to draw stylized silhouettes, but
their main focus is to draw coherent silhouettes which also coherent from frame to frame
to look more realistic. Behind the algorithm is the approach that they draw in the first
frame the silhouette by finding it, and drawing it with brushes. These lines are saved for
the next frame, where the same process starts but in this step the new lines are checked
against the old ones to see if something moved, this makes it possible to remove flickering of
the silhouette, by drawing the new silhouette nearby the old silhouette. An example of the
output of the algorithm can be seen in figure 2.8.

2.2.2. Non-Real-time Methods

One non-real-time method is the research topic “Stereoscopic 3D Line Drawing“ from Kim
Yongjin et al. [KLKL13], the paper describes two basic rendering approaches the center-eye-
based, which uses the lines in a view from a centered perspective for both eyes to draw stereo
lines, and the each-eye-based stereo line drawing, which uses lines from the perspective of
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Figure 2.8.: Stylized coherent silhouette [KDMF03]

each eye to draw. The research focuses on using the each-eye-based approach since it is the
only one giving valid results for each eye, even if there are issues like binocular rivalry, that
can occur when one of the eyes has a different picture for example one eye sees a line the
other eye can’t see. The basic approach of drawing the stereoscopic 3D lines is to find points
connected via lines that exists for each eye view, if there are such lines, the lines are drawn
for both eyes. This simple method needs a lot of computation in object space which is not
applicable for real-time rendering. To solve performance issues and reduce the computation
amount a faster approach is introduced which runs in image space. However, the results of
both methods look good these can’t be applied to a VR environment such as a CAVE since
the method is not scaling well. There results showed that an PC with a 2.66 GHz Intel Core
i7 CPU 920, 6 GB memory, and an NVidia Quadro FX3800 graphics card can only render
30000 vertices at about 3fps. See figure 2.9 for an example of 3D stereo lines.
The paper “Blueprints - Illustrating Architecture and Technical Parts using Hardware- Ac-
celerated Non-Photorealistic Rendering“ from Marc Nienhaus et al. [ND04] shows how to
render blueprints of 3D scenes with the help of depth images and depth peeling. The al-
gorithm uses multiple passes to cut out the silhouette edges and the crease edges. Besides
these edges which are common in line drawing, the research shows how to draw lines which
are hidden such that the rendered objects look transparent, which is common for blue prints.
The biggest problem about the algorithm is the heavy computation amount, in year 2004
the algorithm achieved with an NVidia GeForce FX 5600 5fps with a resolution of 512x512.
In modern CAVE installations it is common that the view for 5 Sides needs to be rendered.
Each side can have a high resolution which needs to be rendered for each eye. That is the
reason why it is unusable in such installations, the rendering has to be fluent. Besides that,
the method shows great results especially for architectural illustrations and blue prints which
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Figure 2.9.: 3D stereo lines [KLKL13]

can be seen in figure 2.10

Figure 2.10.: NPR Blueprint [ND04]

The work “Programmable Rendering of Line Drawing from 3D Scenes“ from Stéphane Grabli
et al. [GTDS10] describes a non-real-time rendering process to render line drawings from 3D
models. The idea behind the process is following: The 3D scene is used to extract feature
lines and the projection the result of this process is called view map. The user defines in the
so called style description different style modules to be applied, the language used is python
for the style definition. To get the final result each style module is applied to the view map
and in the end put together to the final image. One of the reasons why this approach can’t
be applied in real-time is that the computation of the view map according to the paper
takes seconds to several minutes for a model with 50000 polygons. However, this method
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can deliver great results as seen in figure 2.11.

Figure 2.11.: Example of programmable rendering [GTDS10]

2.3. Image Based Methods

Image based methods are operating on image space only, that means these methods take a
2D image either real or rendered as input and compute these. The output can vary from for
example edge detection to stylized images. The image based methods can also be chained
like rendering based methods to apply multiple effects. First a stylized method could be
applied to an image and then it could be grey-scaled to get a painterly image in black and
white.

2.3.1. Stylized Effects

One image based method is the one described in “Non-Photorealistic Rendering with Spot
Colour“ by Paul L. Rosin et al. [RL13]. The basic idea behind is to take photos and render
them using the spot color technique, which means the image will be rendered as greyscale
image expect some color called spot color. The paper also shows some examples where other
rendering techniques are combined with spot color like tone shading.
The first step in the algorithm is to transform RGB colors to hue and saturation which makes
it possible to better match colors. Also the color channels are smoothed with a Gaussian
kernel. The article describes multiple criteria to get the spot color of an image, for example
based on the shape of an image, based on salience or based on the background. All of them
deliver different results. The algorithm delivers great results see figure 2.12, however it is
not really fast since it takes 2 seconds to add spot color to an image with 0.6M pixel on a
3.40 GHz Intel Core i7. The good thing of the method in the paper is fully computed on
CPU not GPU hardware. This means it should be possible to implement a mix out of spot
color and picking in an CAVE environment and for example support selection of objects.
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Figure 2.12.: Spot color filter applied to an image [RL13]

The “Image Stylization by Oil Paint Filtering using Color Palettes“ from Amir Semmo et
al. [SLKD15] introduces an Algorithm to transfer a digital image into an oil like painting by
applying multiple steps of image processing. First of all, a user specified number of colors
is extracted to a color palette, which is later used to draw again. Then for the colors of the
palette the placement is found and the according color is used to paint the region. After this
step the luminance is quantized and in the end the image is smoothed. From the original
images the edges are detected proceeded to a flow field where brush textures are applied
finally after the textures are vanished. As last step the results from the smoothed image,
the edge detection and the vanished textures are put together to the final image which re-
sults in a painterly like image see figure 2.13. First of all, each of these steps needs a lot of
computation which results in long rendering times.
The paper states that the algorithm needs for an Image of 800 x 600 pixels and a color
palette of 25 around 50 seconds. The hardware used was an Intel c©XeonTM 4x 3.06 GHz
and an NVidia c©GTX 760. This makes it impossible to use this algorithm in VR since it is
not running in real-time. A work with a lot of different rendering techniques can be found

Figure 2.13.: Oil painting [SLKD15]

in “Non-Photorealistic Rendering of Portraits“ from Paul L. Rosin et al. [RL15]. The work
is focused on rendering portraits as non-photorealistic portraits. First of all, they start with
fitting the face model which results in a smoothed and filled shape of the face. Since this
shape lost a lot of information they refine the face model to readd for example the shape of
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the mouth.
As next step they render the skin again, but they apply also Gaussian filters to smoothen
the skin over there facial model. To add more detail, the algorithm finds smooth lines and
renders them into the picture. As nearly last step a shading effect is added so that the pic-
ture gains again more three dimensional details. The last step consists of adding more detail
for the eyes, the hair and other important details, which need to preserve the rendering to
a NPR from the original image.
The algorithm delivers accurate results see figure 2.14. However, the computation is expen-
sive, the paper states that it takes around 30 seconds to render a 0.5 megapixel portrait on
a 3.40 GHz Intel Core i7 with the unoptimised code. Since this work was done in 2015 it
does not make sense to apply it in a VR environment.

Figure 2.14.: NPR Portrait of president Obama[RL15]

2.3.2. Edge Detection

An edge detection method developed by Sobel and Feldman documented in the paper “A
3x3 Isotropic Gradient Operator for Image Processing“ [SF68] is also called Sobel filter. The
algorithm uses two 3x3 matrices for each axis one of them, that means in image space one
for the x-axis and one for the y-axis. These matrices are also called convolution kernel and
applied to each pixel, which means that the matrices are applied in a field of 3x3 around the
pixel. Both results from the x and the y axis are then combined to give the resulting pixel.
The final result consists of an image which is black and has white lines which represent the
detected edges, see figure 2.15.
The use of matrices and vectors makes it easy to apply the Sobel filter to a rendering pipeline

Figure 2.15.: Applied Sobel filter before and after
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with the help of an shader, since the graphics hardware heavily uses matrices vectors and
the math to compute these.
A second approach about image based edge detection is the work “Fast Boundary Detection:
A Generalization and a New Algorithm“ from Werner Frei and Chung-Ching Chen [FC77].
The work uses the same approach as the Sobel filter by using 3x3 matrices and so on. The
filter developed by Frei and Chen adds seven more matrices to the processing, the result is
that the improved filter finds more edges also in images and detects normal edges as thinner
edges. This means the results will be more accurate and more valuable for image processing,
where the results of both the Sobel filter and the Frei Chen filter heavily depend on the
processed images, see figure 2.16 for a comparison of the Sobel filter and the Frei Chen filter.

Figure 2.16.: Left original image, middle Sobel filter, right Frei Chen filter

A more advanced and accurate edge detection and line drawing filter can be found in the
work “Coherent Line Drawing“ from Henry Kang et al. [KLC07]. The paper shows how
to implement a fast and accurate line drawing filter. The basic idea is to first construct
the edge flow image from the original image and then process it with difference of Gaussian
(DoG) filtering from the flow image. To compute the flow image and to apply difference of
Gaussian it is needed to apply multiple kernels and calculations.
The results presented in this paper are that the flow image takes around two to four seconds
and to apply the difference of Gaussian filter it takes four to six additional seconds on a dual
core computer system with 3 GHz. In this case it is not possible to apply these filter to VR
since each frame would take to long to render. Figure 2.17 shows the two step process of
computing the final image.

Figure 2.17.: Coherent line drawing [KLC07]

A second paper which describes oil painting like image processing is “Oil Painting Rendering
through Virtual Light Effect and Regional Analysis“ from Sungkuk Chun et al. [CJK11].
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The visual results are not that good than the ones of [SLKD15], but still good. The algorithm
in the paper extracts edges with the help of the sobel filter [SF68]. The second step is to
generate the painterly rendering by using the edges and apply them with brush strokes onto
the image. As final step the intermediate image is transformed with virtual light to simulate
the effect of real oil paintings which look different according to the angle of the light falling
onto it.
Because there are no measurements, evaluations or benchmarks of the algorithm inside the
paper it is not possible to tell if this method can be applied to VR. The steps of the algorithm
are illustrated in figure 2.18.

Figure 2.18.: Oil painting with Sobel filter[CJK11]

2.4. NPR Perception

Non-photorealistic perception means how do we as observer perceive NPR effects when
using stereoscopic rendering. Which is necessary and good to know in order to receive good
rendering results in stereoscopic 3D.

2.4.1. Binocular Depth Perception

When trying to add NPR effects to virtual environments it is good to know how people per-
ceive the depth. The work which was researching this topic is “Binocular Depth Perception
of Stereoscopic 3D Line Drawings“ from Yunjin Lee et al. [LKKL13]. The paper’s focus is
on 3D line drawings and it consists of four different test. First of all, the first test was to
test monoscopic vs. stereo lines, where all persons tested said that the stereo lines generated
a stereoscopic 3D effect. This test was necessary in order to see if stereo drawn lines can
produce such an effect.
As second test the work shows the results of a comparison between stylized lines and plain
lines. The results of this second case where that 64.8% voted that the stylized version gives
them a better distance perception, where 35.2% said the plain version produces a better
distance perception.
The third of four tests, tested if a line rendered scene weakens the distance perception against
a usually shaded version of the same scene. To achieve the result, the test displayed a line
rendered version of the scene and below different version of the scene as shaded rendering
by varying the inter-pupillary distances. The question was which of the shaded scenes does
best fit to the depth perception of the line drawn scene. Most of the people choose one of
the average versions of the shaded rendering.
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As last test scenario the paper describes a test to check how lines added to a shaded image
can influence distance perception. In order to test this a shaded image was displayed as
reference and the person should choose a second shaded image with does fit best in distance
perception to the reference. In each version of the test images different amounts of lines
where added to the image. As result of this the work mentions that adding lines to stereo-
shaded images strengthens distance perception. In figure 2.19 different version of the same
object can be seen with techniques from the four test scenarios.

Figure 2.19.: Depth perception test renderings[LKKL13]
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2.5. Summary

In order to have a better overview about the described methods and algorithms the following
sections should give a better overview about them and shortly summarize what is applicable
and usable in VR.

2.5.1. Rendering Based Methods

Name Real-time Pre-processing Summary

NPR Virtual Environments yes yes Pre-processing of input
textures, draws 3D lines,
painterly rendering style

Hardware-Accelerated Paral-
lel Non-Photorealistic Volume
Rendering

yes no tone-shading, silhouette ren-
dering, gradients, color-cues,
3D textures for speedup

Real-time Pencil Rendering yes yes contour detection, shaking
contour, offline generated
pencil, contour and paper
normal textures

Stylized Rendering Tech-
niques for Scalable Real-Time
3D Animation

yes yes Cartoon shading, pencil
sketch shading, silhouette
detection, stylized edges,
motion lines

Post-processing NPR Effects
for Video Games

yes no edge detection, texture sim-
plification, shadow recolor-
ing, depth saturation, blur ef-
fects, contour thickness, color
palette modification

Photorealism or/and Non-
Photorealism in Augmented
Reality

yes yes cartoon shading with step
function

Coherent Stylized Silhouettes yes no stylized silhouettes, coherent
silhouettes, apply brushes

Stereoscopic 3D line Drawing no yes compare center-eye and each
eye based, find connected
points, binocular rivalry

Blueprints - Illustrating
Architecture and Technical
Parts using Hardware-
Accelerated NPR

no no depth images, depth peeling,
multipass rendering, silhou-
ette and crease edges, draw
hidden lines, transparent ef-
fect

Programmable Rendering of
Line Drawing from 3D Scenes

no no feature lines, style descrip-
tion, heavy view-map compu-
tation

The algorithms in “NPR Virtual Environments“ can be applied to VR since it supports real-
time rendering and VR, only downside is that it needs pre-processing to generate the textures
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which limits the on the fly usage of loading models etc. The research from “Hardware-
Accelerated Parallel Non-Photorealistic Volume Rendering“ is full of rendering methods
which run in real-time and do not need pre-processing which makes it possible to use it
in VR. “Real-time Pencil Rendering“ uses algorithms that can render in real-time as well
but which need pre-processing for the pencil textures and so on, besides the fact of little
pre-processing it is useful for VR.
The work “Stylized Rendering Techniques for Scalable Real-Time 3D Animation“ shows
how real-time stylized renderings can be done and also requires pre-processing for some
parts which makes it partly usable in VR. The research in “Post-processing NPR Effects for
Video Games“ has lots of different techniques and also does not require pre-processing which
makes it possible to use in a virtual environment. “Photorealism or/and Non-Photorealism
in Augmented Reality“ shows non-photorealistic real-time rendering in augmented reality
which need pre-processing, besides the pre-processing the algorithm could be applied to VR.
A real-time method which needs no pre-processing and is usable in VR is described in
“Coherent Stylized Silhouettes“. The method from “Stereoscopic 3D line Drawing“ is
not running in real-time which makes it impossible to use it in VR. Also the technique
described in “Blueprints - Illustrating Architecture and Technical Parts using Hardware-
Accelerated NPR“ is not running in real-time as well, besides that also the algorithm from
“Programmable Rendering of Line Drawing from 3D Scenes“ can not be applied to VR as
well because it is not running in real-time.

2.5.2. Image Based Methods

Name Real-time Pre-processing Summary

Non-Photorealistic Rendering
with Spot Colour

no no greyscale, color transforma-
tion, spot color, tone shading,
color channel smoothed

Image Stylization by Oil Paint
Filtering using Color Palettes

no yes color replacement and simpli-
fication, luminance quantiza-
tion, edge detection, flow field
and brush textures

Non-Photorealistic Rendering
of Portraits

no no smooth faces, smooth lines,
readd details, shading effect

A 3x3 Isotropic Gradient Op-
erator for Image Processing

yes no edge detection, 3x3 matrices,
fast

Fast Boundary Detection: A
Generalization and a new Al-
gorithm

yes no edge detection, 3x3 matrices,
fast more accurate then Sobel
filter

Coherent line Drawing no no edge flow image, difference of
Gaussian

Oil Painting Rendering
through Virtual Light Effect
and Regional Analysis

unclear no uses Sobel edge detection,
painterly rendering, brush
strokes, virtual lighting

The algorithm described in “Non-Photorealistic Rendering with Spot Colour“ has tech-
niques which do not need pre-processing but also do not run in real-time which makes it
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unusable in VR. However, a minimized version of the techniques which extracts only specific
colors could be applied. “Image Stylization by Oil Paint Filtering using Color Palettes“
shows a way to render stylized oil paintings in non real-time with pre-processing, this makes
it impossible to apply it in VR. The paper “Non-Photorealistic Rendering of Portraits“
shows also non-real-time methods without pre-processing, the algorithms used need a lot of
computation which means that it can not be used in VR.
One real-time algorithm with no pre-processing which can be applied to VR is the work “A
3x3 Isotropic Gradient Operator for Image Processing“. Besides this work there is also an
improved algorithm which is also real-time and without pre-processing described in “Fast
Boundary Detection: A Generalization and a new Algorithm“. The method described in
“Coherent line Drawing“ does not need pre-processing but requires a lot of computation
which makes it non-real-time and also unusable in VR. A technique where it is not clear if
it runs in real-time is the one described in “Oil Painting Rendering through Virtual Light
Effect and Regional Analysis“, besides this unclear fact it does not need pre-processing.
Since it is not clear if the algorithm runs in real-time or not it is also not clear if it can be
applied to VR.

2.6. NPR in Visualization

NPR is commonly used in the visualization field. The paper “Illustrative Visualization: New
Technology or Useless Tautology?“ [RBGV08] from Peter Rautek et al. gives an overview of
what happened in visualization in terms of NPR in the past and what to come in the future.
First of all, the paper starts with describing so called focus and context techniques, which
are used to let the observer focus on some important parts and not on the context itself, an
example can be seen in figure 2.20.

Figure 2.20.: Focus and Context [RBGV08]

The image shows how to focus on specific parts by blurring everything else and also as
second example how to guide the observer to special parts of the image which is called magic
lens in the paper and magnifies special parts. As second component of visualization the pa-
per describes visual abstraction techniques which are used to artificially remove information
in the image to enhance the perception of the illustrated object. The described techniques
are for example drawing styles like pen, pencil and brush techniques which are stated as ef-
fective but difficult to master. The paper also mentions that these techniques are nowadays
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providing good results but still distinguishable from handcrafted illustrations, and have been
the main focus of NPR research in the past. After describing the research of the past the
paper gives an outlook of what will come in the future. For example the paper describes that
in the future it should be possible for scientists and other people which need visualization
to easily illustrate there images also in a stylized way by having no knowledge in the illus-
tration itself. By now illustrative visualization is seen as tool for efficient communication of
knowledge in images.
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3. Concept

The thesis itself starts by describing the requirements and the structure of the application.
Followed by the implementation of a prototype application that is able to use different
algorithms to render 3D stereo images in the CAVE. The prototype is then used to implement
non-photorealistic rendering (NPR) algorithms and display them. Finally the algorithms are
evaluated by measuring and benchmarking the NPR algorithms in the CAVE. All of these
steps are then summarized in the end by giving a summary of the measurement as well as
the final conclusion.

3.1. Requirements

In order to be able to compute 3D stereo images in multi-display virtual reality (VR) instal-
lations such as the CAVE it is necessary to fulfill some requirements for example:

• The algorithms and effects need to be stereoscopic 3D capable.

• The effects and algorithms need to be useable in multi-display installations.

• The computation and rendering needs to be real-time, otherwise the user would be
distracted while viewing the rendered images in 3D since the point of view could not
be updated fast enough.

• The algorithms should be applicable without pre-processing in order to apply them on
the fly on any data set which needs to be rendered.

• The application is implemented in C++ and uses OpenGL.

3.2. Structure of the Application

The full application consists of multiple components for example the master and the render
node which take care about communication between the nodes and the rendering process
on the nodes. The CAVE framework, which is used by the nodes to communicate and
synchronize, the window management which handles opening a window, closing it and key-
board input by the user. Furthermore, there are the core graphics components like, the
mesh loading and drawing, the matrix stack, the shaders, render textures which are used as
render targets and the measurement component. Illustration 3.1 shows the components of
the application as well as shows which are used by the master or render node.

3.2.1. Master and Render Nodes

The master and render nodes are used to start and run the application, the main function
of the master node is to start the render nodes and communicate with them, besides the
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Figure 3.1.: Overall structure of the application

communication the master node is using the user input and forwards these to the render
nodes in order to react on keyboard input as well as changes from the tracking system which
affect the users view. The render node itself has the purpose of displaying and rendering
the 3D scene to the screen it is attached. The render nodes react on changes coming from
the master node and updates the 3D scene according to the new information. Both the
master and the render nodes implement the CAVE framework which supports the described
functionality, see section 3.2.2 for more information about the concept as well as section 4
for more information about the implementation and function in detail.

3.2.2. CAVE Framework

The CAVE Framework is developed by Markus Wiedemann at the Leibniz Supercomputing
Centre. The CAVE Framework assists in launching the application by starting the render
nodes needed for displaying. Besides launching it also support the communication and
synchronization between the render nodes and the master node. The framework is also able
to read data from the tracking system and automatically sending this information to the
render nodes, as well as user input via keyboard or the wand. The detailed function and
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usage of the CAVE framework is explained in chapter ??.

3.2.3. Window Component

The window part of the application is used to create a new window, display this window and
closing it, besides that it initialized everything necessary to render 3D scenes with OpenGL,
for example starting the render loop and leaving it. Furthermore, the component reacts
on user input via keyboard and forwards the input to the render nodes. Details about the
window implementation can be found in section 4.2.4.

3.2.4. Mesh Component

The mesh component takes care about loading meshes from the file system, as well as drawing
them. The mesh component is able to load file formats in obj file format and the attached
material information as mtl files. The mesh component parses the information from the
obj file to OpenGL buffers in order to use them at a later point for rendering, besides that
also the materials are stored and the textures are loaded and stored for the later use with
OpenGL. For further details about implementation see section 4.2.5.

3.2.5. Pipeline and Matrix Stack

Since OpenGL does not support the build in matrix stack and pipeline anymore in newer
versions the pipeline and matrix stack reimplement these functions for the application. In
detail it supports scaling, translation and rotation in order to be able to modify the 3D scene
again. Besides that, it helps to apply the necessary information of the matrices to the used
shader. For example, the pipeline is able to set the view matrix. Section 4.2.6 gives more
information about the implementation and usage of the pipeline and matrix stack.

3.2.6. Rendering

The rendering component is used to load and compile the shader programs from the file
system since they are stored as GLSL source files. The Rendering component gives detailed
feedback if a shader could not be loaded, compiled or linked. Besides I/O and compile
functions the Shader component is able to enable and disable a shader, as well as fetching
necessary information to set specific input values of the shader so called uniforms. Section
4.3 describes the implementation of the Rendering component. The shader and rendering
algorithms are described in more detail in section 3.3.

3.2.7. Render Textures

The render textures are used in the whole process of rendering and are required in order
to make it possible to add post-processing effects such as greyscaling. The render texture
component consists of two color-buffer render targets and one depth-buffer. The render
texture can be created in the width and height required besides that it is possible to set a
texture as depth buffer if necessary. Further implementation and usage details can be found
in section 4.2.8.
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3.3. Rendering Algorithms

This section describes which rendering algorithms are going to be evaluated and imple-
mented. Since there are many algorithms and techniques that could be used it is necessary
to limit the amount for more clear comparison and focus on valuable results. All of the
following algorithms and techniques where chosen to enhance the rendered scenes for the
observer, by removing or adding information.

3.3.1. Phong Shading

The first shading algorithm is the phong shader which is often called per-pixel lighting shader.
This shader is based on the phong lightning model and is used to render 3D meshes with
correct lightning and in a nearly photorealistic way, such that other algorithms can use the
output of these to apply different effects for example greyscale. The phong shader uses the
direction of the light and 3D data from the scene or model to compute the amount of light
added as well as uses material information to add specular as well as ambient parts. The
phong shading model is widely used in computer graphics and a standard way to render 3D
meshes. Since it is one of the common approaches the measurement of the phong shading
model is not needed, but needs to be measured when it is combined with other effects that
work on top. The following formula shows how to compute phong shading, when the light
material and vectors are known.

Iambient = Lightambient ·Materialambient (3.1)

Idiffuse = Lightintensity ·Materialdiffuse · (~L · ~N) (3.2)

Ispecular = Lightintensity ·Materialspecular · ( ~E · ~N)n (3.3)

I = Iambient + Idiffuse + Ispecular (3.4)

3.3.2. Cell/cartoon Shading

Cell shading which is also often called cartoon shading is a 3D effect that generates non-
photorealistic renderings from 3D data, by abstracting the scene and removing realistic
lightning, and also introducing hard borders during the shading, to achieve an effect that
looks like cartoon style. Cartoon shading is sometimes used for visualization of buildings to
generate a drawn picture of the 3D model. An example of cell shading can be seen in figure
3.2, which illustrates the hard borders of the shading and also uses simple colors instead of
textures. In the equations below the cell shading formula is noted.

Intensity = ~L · ~N (3.5)

I =


color if Intensity > 0.95

color ∗ 0.7 else if Intensity > 0.5

color ∗ 0.3 else if Intensity > 0.05

color ∗ 0.1 otherwise

(3.6)
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Figure 3.2.: Cell/cartoon shading

3.3.3. Greyscale and Sephia

Greyscaling and Sephia are two of the effects that come from image processing and manipu-
lation. Both of them apply filters and simplification on the color information. For example,
greyscaling combines the different color channels of red, green and blue and transforms these
to greyscale information. This effect can be used to greyscale a currently unimportant part
of the scene and let the user focus on a specific part of the scene by not removing color
information. The same applies to Sephia where the colors are transformed to a more yellow
centered appearance than the real one. Also the inverse could be relevant by using sephia
or greyscaling on selected objects for highlighting. The following two formulas describe the
greyscale and the sephia computation.

c =

r
g
b

 •

0.29
0.59
0.12

 (3.7)

greyscale =

c
c
c

 (3.8)

i =

r
g
b

 •

 0.3
0.59
0.11

 (3.9)

sephia =

 0.2
0.05
0.00

 · (1 − i) +

 1
0.9
0.05

 · i (3.10)

3.3.4. Simple Spot Color or Color Selection

The simple spot color effect is based on the spot color idea from “Non-Photorealistic Ren-
dering with Spot Colour“ by Paul L. Rosin et al. [RL13] which is presented in section
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2.3. Since the algorithm from the paper is not efficient enough for real-time rendering the
simple spot color effect uses a pre-defined color as filter and applies these to the scene by
greyscaling everything that does not match the pre-defined color. This reduces the amount
of computation to a minimum since shapes and other things are not taken into acount. The
only computation left is to transform the RGB colors to hue and saturation to make it pos-
sible to compare the color itself with a defined delta. An effect like this makes sense when
visualizing for example heat maps and extracting only the red colors to focus on important
parts. Following formula shows how to distinguish if the real color should be chosen or if it
should be greyscaled.

color =

{
color if colorselected = color

greyscale(color) otherwise
(3.11)

3.3.5. Focus + Context with Gaussian Filter

The focus and context effect is one of the common approaches in visualization nowadays
according to the paper “Illustrative Visualization: New Technology or Useless Tautology?“
[RBGV08] from Peter Rautek et al. that is analyzed in section 2.6. Since it is one of the
common approaches this effect uses the Gaussian filter to blur out the so called context
in order to let the user focus on specific parts of the scene. This focused parts can be for
example a selected object or other relevant 3D information of the scene. The focus and
context technique is also proven as improvement for visualization.

3.3.6. Edge Detection and Enhancement

Edge detection is one of the NPR methods that adds information by detecting edges. The
edge detection and enhancement effect is based on the Sobel and on the Frei Chen edge
detection algorithms which are described in the papers “A 3x3 Isotropic Gradient Operator
for Image Processing“ [SF68] and “Fast Boundary Detection: A Generalization and a New
Algorithm“ [FC77]. Where both of them are presented in section 2.3.2. Since some 3D mod-
els can be better recognized and visualized with more detailed information of the structure,
edge enhancement is a good method to be used since it detects also fine lines in an image
which can be used to draw edges on top of the image to enhance the structure and the 3D
mesh.

3.3.7. Silhouette Drawing

Silhouette drawing is used to enhance non-photorealistic effects of for example cartoon shad-
ing by adding extra information to the shape of 3D meshes, also besides enhancement of
cartoon shading it is often used to highlight picking of 3D objects by drawing a line around
of them. The silhouette is drawn by scaling the actual 3D object bigger than it is and filling
the complete content with the silhouette color, for example black. After the bigger object
is drawn the actual object is drawn in correct size and correct colors. The result is that
a slightly bigger object is drawn that represents the border and the actual object is drawn
on top of the silhouette in original size. As previously described this effect can be used for
enhancement of cartoon shading as well as highlighting picking which is for example also
used in computer games to select units as well as in visualization by highlighting parts in a
complex 3D model. An example of silhouette drawing is illustrated in figure 3.3.
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Figure 3.3.: Silhouette drawing around a space men

3.3.8. Combination of Effects

The above described effects can also be combined which can result in more rendering passes
that would need more time to render for each frame and would reduce the frames per second.
A combination of effects can be for example highlighting the selection by drawing a silhouette
around the selected object and also applying the focus and context technique to enhance the
selection even more. However, the combination of all effects will not be part of this thesis,
since the amount of combinations is too high to measure and compare them all in a fixed
amount of time. Only some combinations will be measured since parts of the effects need
input from other effects for example all of the post-processing effects like simple spot color,
focus and context need as input a rendered scene that comes from either phong lightning or
cell shading.

3.4. Application Process

The application works as follows: First of all, when the Master node is starting, it initializes
and starts up the render nodes. After that it shows an empty window for using the keyboard
input. The master node then continues until it is closed and synchronizes the necessary
data such as tracking and input by the user to the render nodes. While the render nodes
are starting the necessary data is loaded from disk and initialized such as mesh data and
shaders. After the data is loaded the window is created and the render process is started.
The render process itself draws the 3D data in a first step into a texture and the texture is
used to for rendering in a second pass the post-process effects such as greyscaling or blurring.
Also if enabled the outline of the 3D mesh is drawn in the first rendering step. The rendering
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process itself is illustrated in figure 3.4. The dashed lines are optional paths in the rendering
process. The implementation of the rendering process is described in section 4.3. The render
nodes run as long as the master node is running, as soon as the master node is closed the
render nodes also quit and the application is fully shut down.

Figure 3.4.: Rendering process of the application

3.5. Measurement

In order to proof if techniques can be applied to the CAVE as virtual reality installation it
is necessary to measure the algorithms and techniques. Since the limiting factor for VR in
terms of performance is the frame-rate the algorithms should be compared by measurement
of the frame-rate in frames per second (fps). The frame-rate needs to be measured with
defined scenes which are the same for all algorithms, the pre-defined scenes are presented
in section 5.1. For the frame-rate the minimum frames per second, the average and the
maximum frames-per second is measured in order to see and compare how stable the frame
rate is during the rendering process. The benchmark scenes show different standard models
used for benchmarking 3D rendering. All of these models are constantly rotated around the
y-axis while measuring constantly the performance in frames per second. Each effect and
some common combinations are measured for each model. The results of the measurement
are presented in chapter 5.
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The following sections in this chapter give an overview and details about the implementa-
tion of the application. It shows in section 4.1 which systems and software where used to
implement the software and what the software is based on for example software frameworks.
Besides that, section 4.2 describes the components of the software more precicse by explain-
ing the usage of the implemented classes. In section 4.3 the rendering methods are described
in a more detailed way by explaining the overall process of rendering in section 4.3 and the
rendering effects in more detail. Followed by this section about rendering, the measurement
implementation is described in section 4.4.

4.1. System and Software

This section describes details about the systems used to implement for example the work-
station which was used to develop the software and the virtual environment where it should
run in.

4.1.1. Software

The software is based on the programming language C++ and its graphics core is OpenGl
in version 4. For creating a window and OpenGL context GLFW1 is used in version 3.1.2.
GLFW is written in C and has native support for Windows, OS X and Unix-like systems
using the X Window System, such as Linux and FreeBSD. Since GLFW has some compile
time issues on Suse Enterprise FreeGLUT2 was implemented as well. Between GLFW and
FreeGLUT can be switched through compiler directives. In order to support the loading of
3D models in OBJ Format the Tiny Obj Loader3 project is used to load and parse the 3D
information of the models. Since most of 3D models consist besides 3D information also out
of textures the DevIL Library4 is used to load for example PNG or JPEG files from the file
system and bring it to an OpenGL supported format. Because the full matrix stack is no
more available in OpenGL version 4 it was necessary to implement this again by using the
OpenGL Mathematics (GLM) library5 which implements vector and matrix operations. To
run the application on multiple so called render nodes it was necessary to to implement the
Framework from Markus Wiedemann, which is based on GLM, VRPN6 and Boost7. More
about the CAVE in section 4.1.3 and the Framework in section 4.2 Since it was necessary to
develop and run the application on different systems it was necessary that at least MacOS
X and Linux is supported by all mentioned libraries and frameworks.

1GLFW OpenGL Library: http://www.glfw.org/
2FreeGLUT Project: http://freeglut.sourceforge.net/
3Tiny Obj Loader: http://syoyo.github.io/tinyobjloader/
4DevIL Image Library: http://openil.sourceforge.net/
5GLM Library: http://glm.g-truc.net/
6VRPN Project: https://github.com/vrpn/vrpn/wiki
7Boost Library: http://www.boost.org/
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4.1.2. Development System

In order to test and develop the application the development system was a MacBook Pro
15 inch from Mid 2014. The system was running Mac OS X El Capitan. Build in it has
16 GB RAM, an Intel Core i7 with 2,5 GHz and also two graphic cards the first is an Intel
Iris Pro graphics card and the second more powerful is a NVIDIA GeForce GT 750M. The
Development System was running IntelliJ AppCode8 as IDE and CMake9CAVE as under
laying build-system.

4.1.3. Production System

The production system was the 5-sided-projection installation at the Leibniz Supercomput-
ing Centre in Garching Germany which is based on the Audio Visual Experience Automatic
Virtual Environment (CAVE) concept [CNSD+92] from Carolina Cruz-Neira. The CAVE
compute system is an SGI Altix XE500 cluster out of 12 nodes. Each of the nodes has
two Intel 6core Xeon with 3.06GHz, 48GB RAM and NVIDIA Quadro 6000 graphics card.
Besides that, the CAVE has 5 screens formed to a cube with each 2.7m x 2.7m size. Each
of the screens is projected by two Christie DLP-Projectors with each full hd resolution. On
top of that the CAVE has an ART TrackPack4 tracking system. Ten out of the 12 nodes
are used to compute and display where each of them is connected to one of the projectors.
The other two nodes are used control the so called render-nodes. The production system
can run Suse Linux Enterprise or Microsoft Windows if necessary. To obtain the 3D effect
an active stereo system with shutter glasses is used.

4.2. Components

This section should give detailed information about the different components of the imple-
mented application. It also should give detailed information about each component itself
how it is implemented what it does and what problems can occur. Figure 4.1 illustrate
an overview about the components of the Application. In detail the CAVE framework is
described in section 4.2.1, the Window component is described in section 4.2.4, besides these
two components which are used by the render and master node the RenderTexture compo-
nent is explained in 4.2.8. Furthermore, Shader is explained in section 4.2.7 as well as the
Mesh component in section 4.2.5 and the Matrix stack in section 4.2.6

4.2.1. CAVE Framework

The CAVE Framework is developed by Markus Wiedemann and is used to render in a
synchronized manner on multiple machines in parallel. In detail the Application implements
the CAVE framework in two applications. The first application is the so called Master
application. The second application is the so called render node. First of all, the Master
application has the purpose of reading the configurations of the environment the application
should run in this can be either the development system or the CAVE itself as production
system.
The configuration defines how many render nodes are used in the environment and where the

8IntelliJ AppCode: https://www.jetbrains.com/objc/
9CMake: https://cmake.org/
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Figure 4.1.: Components of Master and Render node

output of their displays is shown in the system for example in the CAVE that could be the
front facing wall. Besides display information the configuration also provides IP addresses of
the target system for communication. After the configuration is read the Master application
connects to the different machines which are used as render nodes and starts the render node
application. If this is done the Master is used to take user input from Mouse, Keyboard or
the tracking system and distributes this to the render nodes. Besides user interaction the
master also synchronizes the render nodes in order to prevent flickering of the scene.
The second part of the application which runs on the render nodes is used to display the
scene from the view of the render nodes specific display for example everything which is
shown on the left side of the CAVE. When the render node is started the first thing it does
is to load the configuration and fetch its specific view information this is necessary in order
to know which viewpoint is to render.
After that the render node connects to the master and waits until all render nodes are ready.
If all of them are ready they start with rendering and displaying the scene. In order to get
the viewport of the user to project the scene correctly the render node offers matrices for
the view and projection matrix as well as the user transformation. With this information
it is possible to render the scene correctly for the human eyes. After each frame the render
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nodes are synchronizing their frame with a blocking function that functions like a barrier
which is released if all render nodes have reached it. Figure 4.2 illustrates how the master
and render nodes work together. Requirements for running the application with the CAVE

Figure 4.2.: Master application and Render nodes

framework is that the master can reach all nodes via network and that a broadcast network
address exists through which the communication can be done.

User Input Via Wand

The CAVE framework provides user input inside the CAVE by tracking a so called wand.
The wand is a device the user holds in his hands and consists usually of multiple buttons
to press and a joystick. The tracking system receives the tracking information and also if a
button was pressed. In the CAVE framework the master implements callbacks for this types
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of events and uses these events to process the user input from the wand. During processing
the information about the position and button states etc. is send to the render nodes. The
render nodes itself can retrieve this information if necessary and also combine for example
the joystick input information with the scene to make translation of the rendered scene
possible.

4.2.2. Master Node

The master node is used to start the render nodes, control the render nodes and take user
input which is then send to the render nodes. Besides that, the master node is used to provide
a synchronized time for all render nodes. First of all, when the master node is started a
new window is created with the Window class (see section 4.2.4 for more details. After the
window is created the display function is set which always renders an empty window and
updates the synced time for the render nodes.
Next step after the display function is to attach the keyboard callback to the window. The
keyboard callback is used to react on key presses from the user for example change the render
mode etc. For each of the assigned actions per key the action is also sent to the render nodes
that all of them can switch at the same time to a new render mode if necessary. When all
of the window related functions etc. have been initialized the master node is constructed
with the help of the CAVE framework. The master node is created with the CAVE specific
configuration file.
After creating the master node, the init() function of the master node is called in order
to start all render nodes. If the initialization and start of the render nodes was successful
several sync objects are added to the master node which can be used for synchronizing the
time user input etc. and the sync process is started. If everything went well the main loop of
the master node which calls the display function is started and runs as long as the window
is not closed.

4.2.3. Render Node

The purpose of the render node is to render the 3D scene from its particular viewpoint.
In order to syncronize with other render nodes each render node implements the render
node from the CAVE framework. The node also receives data from the master node in
order to react on user input or changes of the user position and viewport. The render node
also implements all rendering logic starting by loading meshes (section 4.2.5) up to non-
photorealistic rendering techniques. After the render node is started the configuration is
read and a full screen window is created by using the sizes from the configuration. After the
window is created and the display function is set, the actual render node from the CAVE
framework is created and initialized.
As next step the texture rendering is initialized by creating different instances of the
RenderTexture (section 4.2.8). The difference in the instances of the classes is that the
render node can render for a single non-stereo display, a 3D TV by rendering to the display
half for left and half for right eye, and also full stereo to the display. Therefore, three textures
are needed one full screen texture and two texture half the width of the screen for each eye.
While the texture rendering is initialized also all 2D related non-photorealistic rendering
shaders are loaded with help of the Shader class (section 4.2.7).
In order to render the textures later on the screen using the effect shaders a vertex buffer is
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initialized which consists of a square filling the screen. After these steps the DevIL library is
initialized to provide image loading in the render node. Since the application also supports
3D shader effects like toon shading also the 3D shaders are now loaded. When all shaders are
loaded the 3D models are being loaded with the Mesh class (section 4.2.5). Finally, before
starting the sync process and the main loop also the necessary sync objects are added to the
render node. The render node is running the main loop as long as it is having a connection
to the master node, if the master node is shutting down also the render node is shut down.

4.2.4. Window Creation and Keyboard Input

The application supports window creation with GLFW and FreeGLUT through the Win-
dow class. To provide both ways the implementation of the window class can be changed
with compiler definitions. The window class can be used to create the window by calling
Window::createWindow(int width, int height, std::string windowTitle,

int *pargc, char **argv, bool fullscreen), which opens a new OpenGL window with
the specified width, height and title. The method also supports opening a full screen window
if necessary. First of all, the method initializes either GLFW or FreeGLUT and opens a new
window, also for both the OpenGL version is set to 4.1 to provide the newest GLSL shader
version which is necessary for the implemented shaders. After the window and the OpenGL
context is created glew is initialized as well to provide the OpenGL extensions. If nothing
went wrong during this process it returns true which means the window is ready for use
otherwise it returns false.
The window class provides Window::setDisplayFunc(void (*func)()) to set the function
which is called for rendering the scene. For FreeGLUT this function is directly handed over,
for GLFW it is saved and later used. To start the render loop Window::startMainLoop()

can be called which simply starts the render loop of FreeGLUT or starts the GLFW loop.
This function blocks as long as something is rendered and the render loop should run.
Window::close() the render loop can be exit and the window is closed. To exit and close
OpenGL in a clean way Window::terminate() is implemented to correctly exit and close
the window and OpenGL context. During the render process it is necessary to swap the
buffers of the used window this can be done with Window::swapBuffers().
In order to provide user input via keyboard to for example change the render mode or
shader used the window class implements its own keyboard callback supporting the keys
on the keyboard. The keyboard callback can be set and assigned to the window by call-
ing Window::setKeyCallBack( Window *instance, void (*func)(int)) which takes a
function pointer to the method which should be called when a button on the keyboard was
pressed. The called function has only one parameter which reflects the pressed key. The
internal implementation maps either the keys detected by GLFW or the ones detected by
FreeGLUT to the ones provided by the window class.

4.2.5. Mesh Loading and Drawing

Mesh Loading

In order to provide a way to easily load 3D models and meshes for rendering a Mesh loading
class was implemented. Meshes themselves consist of different data which is needed for ren-
dering. The important ones for this application are the vertices of the mesh, the normals, the
texture coords and the texture itself. Besides this information also the material information
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is read which includes the texture information. The mesh loading supports only 3D models
in OBJ file format since it can be exported from nearly every 3D software. The signature
of the Mesh class constructor is as follows: Mesh::Mesh(const char * fileName, const

char *matDir), the first parameter is the path of the 3D model to load and the second
parameter indicates the folder where the materials can be found since textures and so on
are often separated into subdirectories.
First of all when initializing the 3D mesh the parameters are hand over to the Tiny Obj
Loader which loads the file and parses the content of it. The Tiny Obj Loader returns two
vectors of information, the first one is a vector of type tinyobj::shape t which consists of
all 3D information for one shape. The second vector consists of type tinyobj::material t

which holds all relevant material information such as the texture, the ambient color, the dif-
fuse color and so on. Next step during initialization is to iterate over all materials in vector
two and load the diffuse texture into an OpenGL texture. This is done with the help of the
DevIL image library. First of all, the texture is loaded with origin in the lower left corner
(OpenGL standard), if the image is loaded successfully the image information is converted
to RGBA colors with unsigned byte data type. Texture filtering is set to GL NEAREST and
texture wrapping is set to GL CLAMP TO EDGE for both axis (s and t).
After the OpenGL texture is generated and configured the image data which was loaded
from DevIL is loaded into the OpenGL texture and the mip maps are generated. The final
step in this process is to save the OpenGL texture id in the struct MaterialBuffer and
put this struct into a vector of MaterialBuffer. After all materials have been loaded the
shapes of the 3D model are iterated. For each shape the positions, normals and texture
coordinates are saved in a vector of glm::vec4 for the positions and normals and in a vector
of glm::vec2 for the texture coordinates.
When all 3D information was read to the vectors for each of the shapes a separate vertex
array object is generated. The vertex array object functions as single reference to a single
shape. After the vertex array object is generated for each of the vectors of one shape an
array buffer is generated with OpenGL. The array buffers are initialized and filled with the
data from the vectors. Each of the array buffers receive a specific vertex attribute pointer
according to their data. For example, the array buffer for 3D vertices get the attribute
pointer zero, the normal array buffer one and so on. This is very helpful when it comes to
drawing the mesh with an shader since shaders in GLSL support location binding for input
data, this makes it possible to get rid of specifying for each shader during rendering which
data should come to which input variable. Besides the array buffers for vertices, normals
and texture coordinates the indices of the shape are copied into an element array buffer.
This is an optimization since indexing 3D data is more efficient than saving the 3d vertices
for each triangle again. The final step when processing a shape is that all OpenGL ids for all
the buffers etc. are saved to a struct with type ShapeBuffer which is then put to a vector
of the same type. Also the ShapeBuffer holds the information which material is used.

Mesh drawing

For drawing the 3D model which was loaded with the Mesh class the function
Mesh::draw(GLuint shaderProgram) is used. The purpose of this function is to draw the
3D model with the specified OpenGl shader program which comes as parameter. To draw the
Mesh, the vector of type ShapeBuffer is iterated. For each of the ShapeBuffer objects the
according material is taken from the vector of type MaterialBuffer. With the information
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from the MaterialBuffer the texture is set in OpenGL and the texture uniform of the shader
program is also set to the texture id.
After the texture has been set the vertex array object of the shape is bound in OpenGL
and the triangles are drawn with help of the indices. Finally, the the vertex array object
and textures are unbound again to not get in any conflict with the upcoming drawings. If
the vertex array objects are not unbound correctly it can happen that different vertex array
objects conflict each other which results in rendering issues. Therefore, it is necessary that
the buffers etc. are unbound after each usage.

4.2.6. Pipeline and Matrix Stack

Since OpenGL has no matrix stack in the recent versions it was necessary to implement
this functionality again with help of the GLM library which provides implementations for
vectors and matrices. The Pipeline class provides the same functionality as the OpenGL
calls for example glTranslate and glRotate. In order to provide this functionality, the
class holds three vectors of type glm::mat4, one for the model matrix, one for the view
matrix and one for the projection matrix. The reason for the vectors is to implement the
glPushMatrix and glPopMatrix functionality since C vectors can handle the adding and
removing of items. Besides the vector for the different matrices the class holds also three
instances of glm::mat4 for the model view matrix, the model view projection matrix and
one instance for the normal matrix. This is done for optimization purpose, that the vertex
shader does not need to compute these matrices over and over again for each vertex.
During initialization of the pipeline all vectors and all matrixes become initially an iden-
tity matrix set. The pipeline has the functionality to switch the matrix stack used with
Pipeline::matrixMode(int m), the method switches the currently used stack to either
MODEL MATRIX, VIEW MATRIX or PROJECTION MATRIX this method reflects the function
glMatrixMode from OpenGL. The method Pipeline::loadIdentity() sets the current
matrix of the selected matrix stack to an identity matrix like glLoadIdentity in OpenGL
does. Also to provide rotation, scaling and translation the Pipeline implements
Pipeline::translate(float x,float y,float z),
Pipeline::scale(float x,float y,float z), and for each axis a rotation function for
example Pipeline::rotateX(float angle) all of these function multiply the according
transformation to the currently selected matrix stack which can be either the view matrix
or the model matrix. The projection matrix is not supported for these since it makes no
sense to rotate the projection matrix.
Besides the transformations also a complete Pipeline::multMatrix(glm::mat4 mult). To
bring back glPushMatrix and glPopMatrix the pipeline implements the methods
Pipeline::pushMatrix() and Pipeline::popMatrix() which both take the current ma-
trix and put this matrix into the vector again to emulate the matrix stack for glPushMatrix
or remove the top matrix to emulate glPopMatrix. In order to set a correct projection
matrix, the pipeline class implements two functions one for orthographic projection and one
for perspective projection these are manipulating the projection matrix directly and can be
called with Pipeline::ortho( float left, float right, float bottom, float top,

float near, float far) and
Pipeline::perspective(float angle, float aRatio, float near, float far). One
of the most important methods is Pipeline::updateMatrices(unsigned int programId)

which is needed to apply the current matrix stack to a specific shader program, by setting
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the relevant uniforms of the vertex shader. Before the function applies the matrices to the
shader it checks if something has changed and computes if necessary the normal matrix,
model view matrix and the model view projection matrix before these are used by the spec-
ified shader program. Beneath the described functionality the pipeline class provides also
getter and setter functions for the build in attributes.

4.2.7. Shader

In non-photorealistic rendering shaders are heavily used which means it is necessary to load
shader source code and compile this shader code inside the application with OpenGL. In
order to make the handling of multiple shaders easier the Shader class provides a simple api
to load and compile shaders as well as using them. First of all, the constructor accepts c-
strings or string objects. The constructor has also two parameters one for the vertex shader
source code filename and one for the fragment shader source code which can be seen here:
Shader::Shader(std::string vertexShaderFile, std::string fragmentShaderFile).
First of all, after creating a new instance of the Shader class, two OpenGL shaders are cre-
ated with OpenGL one for the vertex and one for the fragment shader. After this operation
was successful the source code files of the shaders is read and being attached to the shaders.
In the next step the shaders are getting compiled with the attached source code. Since it
can happen that shader code is not correct or not compiling the compile status and info
log is read from OpenGL and printed if something has gone wrong with the error messages.
The final step during initialization are to create a shader program attach the vertex and
fragment shader which were compiled before and finally link them together to get the shader
program. The initialization process is finished by binding the fragment data output.
For using the newly created shader program the Shader class has one function to enable the
shader and use it and one function to disable and no more use the shader. To use the shader
the function Shader::useShader() can be used and for disabling Shader::unuseShader().
Also if necessary the shader program can be retrieved by calling Shader::getProgram()

which simply returns the OpenGL shader program. Besides providing these convenience
methods the class also provides an API for getting uniform locations by name since some
shaders also have input data that can be set before using them. To get a uniform location
the method Shader::getUniformLocation(const char *uniformName) returns the uni-
form id of the shader or prints a message in the console if the uniform could not be found.
This likely happens if a uniform was removed during shader code optimization since it was
for example not used. This also helps to find errors inside the shader code.

4.2.8. Render Texture

Some of the non-photorealistic rendering effects need to use a method called render to tex-
ture. For render to texture it is necessary to generate a texture which can be used as render
target during the render process. For simplification of the application the RenderTexture

class offers a simple way to create textures for rendering in a specific size as well as adding
also a depth buffer to the texture if necessary. First of all, if a new object is initialized by
calling the constructor RenderTexture::RenderTexture(int w, int h,

bool withDepthTexture) a new frame buffer is created. A frame buffer can hold zero, one
or multiple textures and also hold zero or one depth buffer. This frame buffer is also used as
target when using the render to texture method. If the frame buffer is created a 2D texture
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is generated with OpenGL which has width w and height h the color format of the 2D texture
is set to GL RGB. Besides RGB as color format texture filtering is set to GL NEAREST for both
GL TEXTURE MAG FILTER and GL TEXTURE MIN FILTER as well as texture wrapping is set to
GL CLAMP TO EDGE for the s and t axis of the texture. After this first color buffer is created
also second one is generated with the same properties in order to support effects that need
two color buffers.
As next step if withDepthTexture is set to true a second 2D texture is generated which has
the format GL DEPTH COMPONENT24 in order to create a 2D depth texture. For the depth tex-
ture also filtering and wrapping is set to GL NEAREST and GL CLAMP TO EDGE as well. When
the depth texture is generated it is attached to the frame buffer which was created before.
If withDepthTexture was set to false in order to not use a separate depth texture a new
render buffer is generated with type GL DEPTH COMPONENT and finally attached to the frame
buffer. After the depth component of the frame buffer was created the 2D color texture is
set as color attachment zero, and the color attachment zero is used as the only draw buffer
of the frame buffer. As a final step the status of the frame buffer is checked in order to find
problems which can occur during the initialization process of the frame buffer. For using the
created frame buffer, color texture, secondary color texture and depth texture the methods
RenderTexture::getFrameBuffer(), RenderTexture::getColorBuffer(),
RenderTexture::getSecondaryColorBuffer() and RenderTexture::getDepthBuffer()

return the OpenGL handle to the according texture. Besides that, the method
RenderTexture::isHasDepthTexture() returns true if a depth texture was used or false if
a render buffer was used for the depth component.

4.3. Rendering

In general, the rendering process is cut into five parts (see figure 4.3). First of all, the
transformations are applied to the Matrix stack, like translation, scale and rotation, to
position the 3D objects correctly and also apply the transformations from the tracking of
the user inside the CAVE. After the transformation the first rendering step is done, which is
also not mandatory and optional in case that an outline should be drawn around the object.
When the outline Rendering is finished the 3D object is rendered in step three which is the
middle part of figure 4.3. The third step is a standard rendering of the 3D object which
uses either Phong shading or Toon shading depending on which effect should be produced.
Both of these rendering steps (two and three) are rendered to a texture with the help of
the RenderTexture class. After step three the first post-processing effect is applied which is
also optional and adds blur to achieve the focus and context effect, the result of this effect
is also rendered to a texture to continue with the fifth step. The fifth step is also the last
step and final rendering pass which also applies post-processing effects and finally renders
to the screen for displaying.

4.3.1. Outline Rendering

In the outline rendering step the outline is rendered by using three rendering passes of the
3D objects in total to generate the outline around the object. First the 3D object is rendered
using a shader that can add an offset to the original model and render only the one solid
color for example black, which results in a slightly bigger representation of the original 3D
object which can be seen in figure 4.4a. The first rendering step also renders only front
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Figure 4.3.: Parts of the rendering process

facing triangles with turned of depth testing. After the first rendering step the same shader
is used to render the back faces of the 3D model but this time without any offset, that the
3D object is rendered in the correct size. The second step also uses a different color like
white, this results in black line that fits the outside of the 3D object see figure 4.4b. The
final step is to render the 3D object in a usual way with enabled depth testing. Result of
step three is the final image with an added outline which is illustrated in fig 4.4c.

(a) Result of outline rendering step one (b) Result of outline rendering step two

(c) Final result of outline rendering

Figure 4.4.: The steps of the outline rendering

To add the offset inside the shader program formula 4.1 is used inside the vertex shader
to compute the new vertex out of the old one by extending it in the correct direction using
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the normal of the vertex.

vertex′ = vertex + normal ∗ offset (4.1)

4.3.2. Blur Effect

The blur effect which is used in the optional step four of the rendering process is able to
blur a texture by using a standard Gauss filter to achieve a Gaussian blur effect. Step four
needs in total two rendering passes to generate the blur effect. One pass is used to add
blur horizontally and the second one is used to blur in vertical direction. To save additional
rendering passes which would be needed to blur multiple objects a mask is used to blur
everything needed in one step (horizontal and vertical). Starting in rendering step three a
second color buffer is used to generate the mask by adding white at positions that should
be blurred and black at positions that should not. The blur shader reads the second color
buffer used for the mask and decides depending on the color if the pixel is blurred or not.
This optimization is only possible because the blur effect is applied in image space and not
in object space. The results of the blur effect are rendered into a texture which is used by
the post-processing effects. An illustration showing the blur effect can be seen in figure 5.4.

4.3.3. Post-Processing

The post-processing step consists of different effects that can be applied in this step, the
effects are limited to one effect for this step. In the following sections each post-processing
effect is described, by explaining the effect itself and the implementation.

Grey scaling

The grey scaling shader used the image data from the texture and produces a grey scaled
image only. The implementation of the shader uses the dot product of the rgb color vector
and a vector which is used to weight the different color channels see equation 4.2 and get
the intensity. The result of the dot product is used for each color channel (rgb), which is
the final fragment color.

i =

r
g
b

 •

0.29
0.59
0.12

 (4.2)

color =

i
i
i

 (4.3)

Sephia

The sephia effect is similar to the grey scale effect but does more computation to achieve the
sephia effect. First of all, the sephia effect also computes the intensity similar to the grey
scale effect. Then the intensity is used to interpolate between the two sephia colors which is
noted in equation 4.5. The result of this interpolation is used as final fragment color.

42



4.4. Measurement

i =

r
g
b
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color =
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 · (1 − i) +
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0.9
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 · i (4.5)

Color Selection

With the color selection shader it is possible to define a selected color in RGB color and
render everything expect this color in greyscale, which is helpful to highlight color parts of
an image. In general, the shader uses the selected color and checks if the current color is the
same. If the colors are the same then it renders the color that was found, if not it uses grey
scaling in the same way it was described in section 4.3.3. In detail the shader transforms
the selected color from RGB color space to HSV (hue, saturation and value), also the color
which comes as input from the texture is transformed to HSV color space. In HSV color
space it is easier to detect similar colors, since color (hue) is separated from the saturation.
The hue has a range from zero to 360 where zero and 360 are the same color (red). The
shader adds a delta to the filter color and checks if the current color is in this delta. If yes
it sets the fragment color to the color from the texture, if not it applies grey scaling to the
current color and returns it as fragment color. Since the values for hue reach from zero to
360 it is necessary to check while applying the delta that it does not exceed 360 or is below
zero by either subtracting 360 or adding 360. An example of the color selection where the
selected color is gold can be seen in figure 5.3 from the concept section.

Edge enhancement

Edge enhancement is used to highlight edges inside the image to gain better visibility of
important image information. The edge enhancement consists of two approaches that can
be selected. The first is a Sobel edge filter and the second is a Frei Chen edge filter algorithm.
More details about the Sobel filter and the Frei Chen filter can be found in section 2.3.2,
which describes the scientific papers about both topics. Both of the edge enhancement filters
work similar expect the chosen filter algorithm which can be the Sobel filter or the Frei Chen
filter. Inside the shader the support for three processing modes is implemented. The first
mode renders the plain result of the filter algorithm to the screen, this results in a black
image where the edges are drawn in white (figure 4.5a). The second mode is the opposite
of processing mode one, it displays the image in white where the edges are drawn in black
(figure 4.5b). The third and last processing mode is able to apply the second mode onto the
original image (figure 4.5c). This third mode is the mode used by the benchmark scenarios.

4.4. Measurement

In order to be able to measure on each render node the frame rate, the measurement is done
by implementing the FpsLogger class. The class is able to log each frame with its timestamp.
By logging each frame with the timestamp the analysis of the results can be done offline, since
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(a) Edge enhancement mode one (b) Edge enhancement mode two

(c) Edge enhancement mode three

Figure 4.5.: Processing modes of edge enhancement shaders

it is possible to compute the longest time span needed to compute an image as well as the
shortest and average. The Measurement uses milliseconds as time unit. The class FpsLogger
has methods to start (FpsLogger::startLogging()), stop (FpsLogger::stopLogging())
and reset (FpsLogger::resetLogging()) the logging. Besides that the class offers a meth-
ods which is called for each frame and saves the frame number plus timestamp in memory
(FpsLogger::newFrame()). When the measurement is stopped the results can be written
from memory to disk as a simple list of frame number and timestamp.
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This chapter lists and analyses the results of the measurements and shows the visual results.
Since this thesis consists of different algorithms, these are as well compared using the mea-
surement results. The visual results will be presented as 2D images since 3D images from
stereo renderings can not be printed. Section 5.2 will list the measured results and shortly
describe from which scenario these results are. In section 5.1 the Benchmark Models and
Scenarios are presented in detail. Section 5.3 discusses the results and analysis them.

5.1. Benchmark Models and Scenarios

For benchmarking the effects and the rendering it is necessary to have pre-defined scenarios
that can be used to compare different effects and combination of effects. The pre-defined
scenarios will be defined in the following section. To see how the effects are performing
with different amounts of triangles three different models are used which will be described
as well in this section. The amount of triangles ranges from 69.451 triangles up to 1.087.716
triangles per benchmark model and in total 2.289.997 triangles for all three models.

5.1.1. Normal Shading and Toon shading

The scenarios also consist of the normal shading and the toon shading scenarios without
any post processing effect, to be able to compare post-processing effects with the standard
shading procedures and to be able to see how much computation is needed for the post-
processing effects additionally to the standard rendering process.

5.1.2. Greyscaling and Sephia

The scenario for greyscaling and sephia are measured to see how for example color selection
performs compared to simple greyscaling and sephia effects, which is needed to see what is
needed to for example check the color against the selected color.

5.1.3. Edge Enhancement with Standard Shading

The edge enhancement scenario with standard shading is able to benchmark the combination
of rendering the scene with phong shading and in addition to that enhance the edges and
structure of the model with edge highlighting. Besides that, the scenario has two variants,
the first is with turned off outlines visible in figure 5.1, the second variant has additional
outlines.

5.1.4. Edge Enhancement with Toon Shading

The scenario edge enhancement with toon shading is comparable to the scenario edge en-
hancement with standard shading. The difference is that the shading model is toon shading.

45



5. Measurements and Results

Figure 5.1.: Example enhanced edges with standard shading

The scenario has also two variants, one with extra outline and one without. The combination
of toon shading and edge enhancement is visible in figure 5.2.

Figure 5.2.: Example enhanced edges with toon shading

5.1.5. Color Selection

The color selection scenario is used to showcase and benchmark the post-processing effect
which is able to render the scene in greyscale. The exceptions in this post-processing effects
are the parts of the scene which have the selected color. In case of matching color between
selected and scene color the scene is rendered normally. Figure 5.3 shows on the left the
normal scene and on the right the scene with color selection set to an orange brown color
that fits to the color of the Buddha statue.
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Figure 5.3.: Example of color selection

5.1.6. Focus and Context

For evaluating the focus and context effect the scenario consists of two models, where one is
in focus and one is the context. The scenario benchmarks the selective blur of the scene by
rendering one object normally and the other blurred. Figure 5.4 shows a rendering where
the focus is on the Buddha statue.

Figure 5.4.: Example scenario of two objects with focus on the Buddha statue

5.1.7. Stanford Bunny

Source Stanford University Computer Graphics Laboratory

Scanner Cyberware 3030 MS

Number of scans 10

Size of scan 362,272 points (725,000 triangles)

Size of reconstruction 35947 vertices, 69451 triangles
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5.1.8. Stanford Dragon

Source Stanford University Computer Graphics Laboratory

Scanner Cyberware 3030 MS + spacetime analysis

Number of scans 70

Size of scan 2,748,318 points (about 5,500,000 triangles)

Size of reconstruction 566,098 vertices, 1,132,830 triangles

5.1.9. Stanford Buddha

Source Stanford University Computer Graphics Laboratory

Scanner Cyberware 3030 MS + spacetime analysis

Number of scans 60

Size of scan 4,586,124 points (9,200,000 triangles)

Size of reconstruction 543,652 vertices, 1,087,716 triangles

5.1.10. Limitations

The scope of the thesis will be limited to effects that can work on any kind of 3D data that
fit to the OpenGL framework for rendering. All effects that do need pre-computation on
the 3D data will not be discussed and evaluated since one of the goals of this thesis is to
evaluate plug and play non-photorealistic effects. These plug and play effects need to be
generic enough to work on 3D data without pre-conditions, like adding more information
out of heavy computations or any other type of pre-processing. The result should be a
toolbox that can be used generally for VR and visualization. One more limitation is that
the algorithms should support a high number of vertices. The reason for a high count of
vertices is that many 3D object that will be visualized have a high resolution and therefore
a high number of vertices that need to be displayed. As example for a high resolution 3D
objects the models of the Stanford 3D Scanning Repository [The] are used see section 5.1
for more details about the used models, including number of vertices of the 3D scans and
3D models used for OpenGL.

5.2. Measurement Results

This section lists the measurement results and shortly describes them. The results are
presented in a table that lists the average values computed over all render nodes. The
detailed measurement results can be found in the appendix.

The list of scenarios is as follows:

1. Reference Measurement: Phong shading, no post-processing, Stanford Dragon and
Buddha.

2. Reference Measurement: Phong shading, post-processing (render to texture), Stanford
Dragon and Buddha.

3. Reference Measurement: Toon shading, no post-processing, Stanford Dragon and Bud-
dha.
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4. Reference Measurement: Toon shading, post-processing (render to texture), Stanford
Dragon and Buddha.

5. Greyscale Measurement: Phong shading, post-processing (greyscaling), Stanford Dragon
and Buddha.

6. Greyscale Measurement: Toon shading, post-processing (greyscaling), Stanford Dragon
and Buddha.

7. Color filter Measurement: Phong shading, post-processing (Color filter), Stanford
Dragon and Buddha.

8. Color filter Measurement: Toon shading, post-processing (Color filter), Stanford Dragon
and Buddha.

9. Sephia Measurement: Phong shading, post-processing (Sephia), Stanford Dragon and
Buddha.

10. Sephia Measurement: Toon shading, post-processing (Sephia), Stanford Dragon and
Buddha.

11. Edge Enhancement Measurement: Phong shading, post-processing (FreiChen), Stan-
ford Dragon and Buddha.

12. Edge Enhancement: Toon shading, post-processing (FreiChen), Stanford Dragon and
Buddha.

13. Edge Enhancement Measurement: Phong shading, post-processing (Sobel), Stanford
Dragon and Buddha.

14. Edge Enhancement: Toon shading, post-processing (Sobel), Stanford Dragon and Bud-
dha.

15. Silhouette Measurement: Phong shading, silhouette, post-processing (Sobel), Stanford
Dragon and Buddha.

16. Silhouette Enhancement: Toon shading, silhouette, post-processing (Sobel), Stanford
Dragon and Buddha.

17. Focus + Context Measurement: Phong shading, post-processing (Blur), Stanford
Dragon and Buddha.

18. Focus + Context Enhancement: Toon shading, post-processing (Blur), Stanford Dragon
and Buddha.

19. Combination Measurement: Phong shading, silhouette, post-processing (Blur + Edge
Enhancement), Stanford Dragon and Buddha.

20. Combination Enhancement: Toon shading, silhouette, post-processing (Blur + Edge
Enhancement), Stanford Dragon and Buddha.

21. Combination Measurement: Phong shading, silhouette, post-processing (Blur + Edge
Enhancement), Stanford Dragon, Buddha and Bunny.
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22. Combination Enhancement: Toon shading, silhouette, post-processing (Blur + Edge
Enhancement), Stanford Dragon, Buddha and Bunny.

Szenario Time per frame in ms Framerate per second

min max avg min max avg

1 16,00000 17,20000 16,66641 58,13953 62,50000 60,00094

2 15,80000 17,40000 16,66633 57,47126 63,29114 60,00122

3 15,80000 17,30000 16,66640 57,80347 63,29114 60,00097

4 15,40000 17,80000 16,66643 56,17978 64,93506 60,00084

5 15,60000 17,80000 16,66640 56,17978 64,10256 60,00095

6 15,90000 17,30000 16,66642 57,80347 62,89308 60,00089

7 16,00000 17,20000 16,66639 58,13953 62,50000 60,00098

8 15,80000 17,30000 16,66649 57,80347 63,29114 60,00064

9 16,00000 17,50000 16,66631 57,18955 64,50000 60,00130

10 16,00000 17,50000 16,66631 57,18955 62,50000 60,00132

11 16,00000 17,20000 16,66636 58,13953 62,50000 60,00112

12 15,90000 17,10000 16,66640 58,47953 62,89308 60,00095

13 16,00000 17,10000 16,66640 58,47953 62,50000 60,00096

14 16,00000 17,20000 16,66646 58,13953 62,50000 60,00073

15 32,10000 34,40000 33,33262 29,06977 31,15265 30,00064

16 31,70000 35,20000 33,33278 28,40909 31,54574 30,00049

17 15,80000 17,20000 16,66640 58,13953 63,29114 60,00095

18 16,00000 21,40000 16,66839 46,72897 62,50000 59,99381

19 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

20 33,00000 34,00000 33,33277 29,41176 30,30303 30,00050

21 32,10000 34,90000 33,33277 28,65330 31,15265 30,00051

22 32,80000 34,10000 33,33274 29,32551 30,48780 30,00053

23 16,00000 17,20000 16,66639 58,13953 62,50000 60,00098

24 15,80000 17,30000 16,66649 57,80347 63,29114 60,00064

Table 5.1.: Average measurement results

5.3. Discussion of Results

From the measurement results in section 5.2 the first thing to notice is that there is no
real difference between phong and cartoon shading since the results differ only a bit from
each other. The reason for this is that both are using the same rendering procedure but
only differ in the used shader, since shaders are optimized for these computations it does
not make a huge difference if there is distinguished between the angle or not. Next fact
which is nearly not noticeable is between using render to texture or not, both phong and
cartoon shading do not differ much when using render to texture or not. This fact was
unexpected since an additional rendering pass is needed to render the texture to the screen
and show the final result. The only reason that explains this behavior is that the graphics
hardware has all needed information in memory and passes these information further to the
renderbuffer by using a simple pass through post-processing shader. The same applies to
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greyscaling, sephia, color filter, edge enhancement and the blur post-processing shaders, the
measurement results of these are all nearly identical to the pass-through shader since they
do only a little bit more computations but not so many and those are using optimized math
operations that are supported by the graphics hardware. A noticeable drop in the frame rate
can be observed as soon as the silhouette rendering is added, the frame rate drops here by
approximately 50% when for example comparing the reference values from table 5.1 and row
one which lists the phong shading and the values from table 5.1 row fifth-teen which lists the
results from silhouette rendering. When analyzing the algorithm that is used for computing
the silhouette around the object it is easy to see that two additional rendering passes are
needed to generate the silhouette, and each of these rendering passes operates on 3D mesh
data unlike the post-processing effects that only operate in 2D image space. However, all
of the implemented algorithms and effects work in real-time with the test scene, where the
silhouette needs the most computation time and would also be the first effect to drop the
frame rate to much when rendering a more complex scene.
Two of the most useful effects are the color selection effect and the focus and context method
which both can be used to highlight objects. Both of these could be used for example for
picking in an virtual environment by using the effect on the objects that are currently
selected. However, the color selection effect does only work on objects that have a solid
color and not on complex objects having multiple colors. As a third highlighting effect the
silhouette drawing effect could be used, the advantage is that the border can be drawn in
any color but the algorithm itself needs a more expensive computation than for example the
focus and context effect or the color selection. In addition to the advantage in selection or
picking objects the silhouette contributes to the NPR effects. Besides those effects the edge
enhancement is able to draw pictures more artificial and let them look more like a painterly
drawing, which is one of the goals in NPR and a nice result.
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In the research topic of virtual reality (VR) and non-photorealistic rendering (NPR) are
a lot of findings, describing algorithms about NPR effects from cartoon shading on 3D
data as well as edge detection and enhancement on 2D data. However, the research field
combining VR and NPR is not that large and it is needed to be researched, since wide
range of application are using VR to visualize. Therefore NPR can help visualizing these by
helping with perception as well as enhanced user feedback from user input. This thesis had
the goal to evaluate NPR effects with the requirements from VR such as real-time capability
and multi display support, besides the VR requirements it should be possible to apply the
used algorithms on any kind of 3D data that can be processed with OpenGL. Furthermore,
it should compare the performance of different rendering techniques by only using standard
software frameworks such as OpenGL.
The prototype application implements a software framework to be able to render on multiple
displays at a time where all displays can be connected to different computing machines like it
is in case of the CAVE which is a audio-visual automatic virtual environment. Furthermore,
the application implements different rendering techniques to achieve effects such as grey
scaling, color selection, silhouette drawing, edge enhancement, toon shading, phong shading
and the focus and context effect.
One of the outcomes is that post-processing effects like grey scaling, color selection, focus and
context or sephia are cheap in computation and can be applied easily without loosing much
performance. One other result was that the silhouette effect decreases the performance by
approximately 50% which was expected lower. In comparison to the post-processing effects
which did not decrease the performance a lot the silhouette effect is the most expensive.
This did not had much effect on the fluent amount of frames per second (FPS) which is
needed for VR in the test scenarios but it could if the complexity of the scene to render will
increase.
In addition to the fact of performance some of the effects can be used to enhance picking
in VR. For example the silhouette effect is able to highlight a selected object by drawing
an silhouette around. The second effect that can enhance picking is the color selection in
case objects having a solid color the picking can select the color and the objects with the
same color will be highlighted. An other effect is the focus and context effect that is able to
direct the focus of the user to different objects. In addition to the focus effect the focus and
context algorithm could also be used for picking by blurring all objects that are not selected.
Finally effects such as the edge enhancement can help to improve perception by highlighting
things and cartoon shading can help to reduce information in the displayed image which
finally help to improve perception.

6.1. Future Work

Although this thesis covers standard NPR effects and describes there usage it is still a limited
set of possibilities to bring NPR into VR. Future work could consist of adding more effects
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in order to improve user perception as well as user input. Also the implementation could
be bundled into a software framework to easily apply the current effects in any kind of VR
display or environment. One example for porting the effects could be to use a head-mounted
display (HMD) instead of using a CAVE. Besides that the application only implemented
possible effects and algorithms that fulfill the requirements of VR it is very likely that in the
future improved algorithms of effects are researched that could not be applied in the scope
of this thesis. It is also very likely that with hardware that is getting better it is also possible
to implement those algorithms that are to expensive in computation now. In addition to
the further development of the prototype application, the used effects could be implemented
in current applications that are used for visualization in order to improve perception and
user input methods. Also in adtition to the usage on complete meshes the methods could
be applied only on parts of the mesh for example only a door in a room.
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A. Measurements and Results

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N02 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N03 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N04 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N05 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N06 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N07 16,00000 18,00000 16,66641 55,55556 62,50000 60,00094

N08 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

N09 16,00000 18,00000 16,66641 55,55556 62,50000 60,00094

N10 16,00000 17,00000 16,66641 58,82353 62,50000 60,00094

Table 1.: Reference results for phong shading with buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 15,00000 18,00000 16,66633 55,55556 66,66667 60,00122

N02 15,00000 18,00000 16,66633 55,55556 66,66667 60,00122

N03 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

N04 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

N05 16,00000 18,00000 16,66633 55,55556 62,50000 60,00122

N06 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

N07 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

N08 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

N09 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

N10 16,00000 17,00000 16,66633 58,82353 62,50000 60,00122

Table 2.: Reference results for phong shading and render to texture with buddha and dragon
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Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

N02 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

N03 16,00000 18,00000 16,66640 55,55556 62,50000 60,00097

N04 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

N05 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

N06 15,00000 18,00000 16,66640 55,55556 66,66667 60,00097

N07 15,00000 18,00000 16,66640 55,55556 66,66667 60,00097

N08 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

N09 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

N10 16,00000 17,00000 16,66640 58,82353 62,50000 60,00097

Table 3.: Reference results for cartoon shading with buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N02 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N03 16,00000 18,00000 16,66649 55,55556 62,50000 60,00064

N04 13,00000 20,00000 16,66622 50,00000 76,92308 60,00161

N05 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N06 15,00000 18,00000 16,66649 55,55556 66,66667 60,00064

N07 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N08 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N09 14,00000 20,00000 16,66622 50,00000 71,42857 60,00161

N10 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

Table 4.: Reference results for cartoon shading and render to texture with buddha and
dragon
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A. Measurements and Results

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 18,00000 16,66640 55,55556 62,50000 60,00095

N02 16,00000 18,00000 16,66640 55,55556 62,50000 60,00095

N03 15,00000 18,00000 16,66640 55,55556 66,66667 60,00095

N04 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N05 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N06 15,00000 19,00000 16,66640 52,63158 66,66667 60,00095

N07 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N08 16,00000 18,00000 16,66640 55,55556 62,50000 60,00095

N09 15,00000 18,00000 16,66640 55,55556 66,66667 60,00095

N10 15,00000 18,00000 16,66640 55,55556 66,66667 60,00095

Table 5.: Greyscale post-processing using phong shading and rendering the buddha and
dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N02 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N03 16,00000 18,00000 16,66640 55,55556 62,50000 60,00095

N04 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N05 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N06 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N07 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N08 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N09 16,00000 18,00000 16,66640 55,55556 62,50000 60,00095

N10 15,00000 18,00000 16,66649 55,55556 66,66667 60,00064

Table 6.: Greyscale post-processing using cartoon shading and rendering the buddha and
dragon
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Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N02 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N03 16,00000 18,00000 16,66639 55,55556 62,50000 60,00098

N04 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N05 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N06 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N07 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N08 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N09 16,00000 17,00000 16,66639 58,82353 62,50000 60,00098

N10 16,00000 18,00000 16,66639 55,55556 62,50000 60,00098

Table 7.: Colorfilter post-processing using phong shading and rendering the buddha and
dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N02 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N03 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N04 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N05 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N06 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N07 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N08 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N09 14,00000 20,00000 16,66649 50,00000 71,42857 60,00064

N10 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

Table 8.: Colorfilter post-processing using cartoon shading and rendering the buddha and
dragon
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A. Measurements and Results

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66631 58,82353 62,50000 60,00130

N02 16,00000 18,00000 16,66631 55,55556 62,50000 60,00130

N03 16,00000 18,00000 16,66631 55,55556 62,50000 60,00130

N04 16,00000 17,00000 16,66631 58,82353 62,50000 60,00130

N05 16,00000 17,00000 16,66631 58,82353 62,50000 60,00130

N06 16,00000 18,00000 16,66631 55,55556 62,50000 60,00130

N07 16,00000 17,00000 16,66631 58,82353 62,50000 60,00130

N08 16,00000 18,00000 16,66631 55,55556 62,50000 60,00130

N09 16,00000 18,00000 16,66631 55,55556 62,50000 60,00130

N10 16,00000 17,00000 16,66631 58,82353 62,50000 60,00130

Table 9.: Sephia post-processing using phong shading and rendering the buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 18,00000 16,66630 55,55556 62,50000 60,00132

N02 16,00000 17,00000 16,66630 58,82353 62,50000 60,00132

N03 16,00000 17,00000 16,66630 58,82353 62,50000 60,00132

N04 16,00000 17,00000 16,66630 58,82353 62,50000 60,00132

N05 16,00000 18,00000 16,66630 55,55556 62,50000 60,00132

N06 16,00000 18,00000 16,66630 55,55556 62,50000 60,00132

N07 16,00000 18,00000 16,66630 55,55556 62,50000 60,00132

N08 16,00000 17,00000 16,66630 58,82353 62,50000 60,00132

N09 16,00000 17,00000 16,66630 58,82353 62,50000 60,00132

N10 16,00000 18,00000 16,66630 55,55556 62,50000 60,00132

Table 10.: Sephia post-processing using cartoon shading and rendering the buddha and
dragon

59



Appendix

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N02 16,00000 17,00000 16,66622 58,82353 62,50000 60,00159

N03 16,00000 18,00000 16,66622 55,55556 62,50000 60,00159

N04 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N05 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N06 16,00000 17,00000 16,66622 58,82353 62,50000 60,00159

N07 16,00000 17,00000 16,66622 58,82353 62,50000 60,00159

N08 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N09 16,00000 18,00000 16,66622 55,55556 62,50000 60,00159

N10 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

Table 11.: Edge enhancement with FreiChen edge detector using phong shading and render-
ing the buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N02 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N03 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N04 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N05 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N06 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N07 15,00000 18,00000 16,66640 55,55556 66,66667 60,00095

N08 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N09 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N10 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

Table 12.: Edge enhancement with FreiChen edge detector using cartoon shading and ren-
dering the buddha and dragon
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A. Measurements and Results

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N02 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N03 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N04 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N05 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N06 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N07 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N08 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

N09 16,00000 18,00000 16,66640 55,55556 62,50000 60,00096

N10 16,00000 17,00000 16,66640 58,82353 62,50000 60,00096

Table 13.: Edge enhancement with Sobel edge detector using phong shading and rendering
the buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66623 58,82353 62,50000 60,00159

N02 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N03 16,00000 18,00000 16,66649 55,55556 62,50000 60,00064

N04 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N05 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N06 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N07 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N08 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

N09 16,00000 18,00000 16,66649 55,55556 62,50000 60,00064

N10 16,00000 17,00000 16,66649 58,82353 62,50000 60,00064

Table 14.: Edge enhancement with Sobel edge detector using cartoon shading and rendering
the buddha and dragon
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Node Time per frame in ms Framerate per second

min max avg min max avg

N01 33,00000 34,00000 33,33262 29,41176 30,30303 30,00064

N02 32,00000 34,00000 33,33262 29,41176 31,25000 30,00064

N03 32,00000 34,00000 33,33262 29,41176 31,25000 30,00064

N04 33,00000 34,00000 33,33262 29,41176 30,30303 30,00064

N05 32,00000 34,00000 33,33262 29,41176 31,25000 30,00064

N06 32,00000 34,00000 33,33262 29,41176 31,25000 30,00064

N07 33,00000 34,00000 33,33262 29,41176 30,30303 30,00064

N08 29,00000 38,00000 33,33262 26,31579 34,48276 30,00064

N09 32,00000 34,00000 33,33262 29,41176 31,25000 30,00064

N10 33,00000 34,00000 33,33262 29,41176 30,30303 30,00064

Table 15.: Silhouette drawing with edge enhancement using phong shading and rendering
the buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 30,00000 37,00000 33,33282 27,02703 33,33333 30,00046

N02 32,00000 35,00000 33,33282 28,57143 31,25000 30,00046

N03 33,00000 34,00000 33,33265 29,41176 30,30303 30,00062

N04 33,00000 34,00000 33,33265 29,41176 30,30303 30,00062

N05 32,00000 34,00000 33,33282 29,41176 31,25000 30,00046

N06 32,00000 35,00000 33,33282 28,57143 31,25000 30,00046

N07 33,00000 34,00000 33,33282 29,41176 30,30303 30,00046

N08 30,00000 37,00000 33,33282 27,02703 33,33333 30,00046

N09 32,00000 35,00000 33,33282 28,57143 31,25000 30,00046

N10 30,00000 37,00000 33,33282 27,02703 33,33333 30,00046

Table 16.: Silhouette drawing with edge enhancement using cartoon shading and rendering
the buddha and dragon
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A. Measurements and Results

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N02 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N03 15,00000 18,00000 16,66640 55,55556 66,66667 60,00095

N04 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N05 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N06 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N07 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N08 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

N09 15,00000 18,00000 16,66640 55,55556 66,66667 60,00095

N10 16,00000 17,00000 16,66640 58,82353 62,50000 60,00095

Table 17.: Focus and context effect using phong shading and rendering the buddha and
dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 16,00000 26,00000 16,67046 38,46154 62,50000 59,98635

N02 16,00000 17,00000 16,66631 58,82353 62,50000 60,00127

N03 16,00000 25,00000 16,67046 40,00000 62,50000 59,98635

N04 16,00000 17,00000 16,66631 58,82353 62,50000 60,00127

N05 16,00000 26,00000 16,67046 38,46154 62,50000 59,98635

N06 16,00000 17,00000 16,66631 58,82353 62,50000 60,00127

N07 16,00000 17,00000 16,66631 58,82353 62,50000 60,00127

N08 16,00000 26,00000 16,67046 38,46154 62,50000 59,98635

N09 16,00000 17,00000 16,66631 58,82353 62,50000 60,00127

N10 16,00000 26,00000 16,67046 38,46154 62,50000 59,98635

Table 18.: Focus and context effect using cartoon shading and rendering the buddha and
dragon
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Node Time per frame in ms Framerate per second

min max avg min max avg

N01 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N02 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N03 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N04 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N05 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N06 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N07 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N08 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N09 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

N10 33,00000 34,00000 33,33263 29,41176 30,30303 30,00063

Table 19.: Focus and context effect with silhouette rendering and edge enhancement using
phong shading and rendering the buddha and dragon

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

N02 33,00000 34,00000 33,33246 29,41176 30,30303 30,00079

N03 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

N04 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

N05 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

N06 33,00000 34,00000 33,33246 29,41176 30,30303 30,00079

N07 33,00000 34,00000 33,33246 29,41176 30,30303 30,00079

N08 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

N09 33,00000 34,00000 33,33246 29,41176 30,30303 30,00079

N10 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

Table 20.: Focus and context effect with silhouette rendering and edge enhancement using
cartoon shading and rendering the buddha and dragon
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A. Measurements and Results

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 32,00000 35,00000 33,33298 28,57143 31,25000 30,00032

N02 32,00000 35,00000 33,33298 28,57143 31,25000 30,00032

N03 32,00000 35,00000 33,33298 28,57143 31,25000 30,00032

N04 32,00000 35,00000 33,33298 28,57143 31,25000 30,00032

N05 33,00000 34,00000 33,33298 29,41176 30,30303 30,00032

N06 32,00000 35,00000 33,33245 28,57143 31,25000 30,00080

N07 32,00000 35,00000 33,33298 28,57143 31,25000 30,00032

N08 32,00000 35,00000 33,33245 28,57143 31,25000 30,00080

N09 32,00000 35,00000 33,33245 28,57143 31,25000 30,00080

N10 32,00000 35,00000 33,33245 28,57143 31,25000 30,00080

Table 21.: Focus and context effect with silhouette rendering and edge enhancement using
phong shading and rendering the buddha and dragon and bunny

Node Time per frame in ms Framerate per second

min max avg min max avg

N01 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

N02 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

N03 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

N04 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

N05 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

N06 32,00000 35,00000 33,33273 28,57143 31,25000 30,00055

N07 33,00000 34,00000 33,33288 29,41176 30,30303 30,00041

N08 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

N09 32,00000 34,00000 33,33273 29,41176 31,25000 30,00055

N10 33,00000 34,00000 33,33273 29,41176 30,30303 30,00055

Table 22.: Focus and context effect with silhouette rendering and edge enhancement using
cartoon shading and rendering the buddha and dragon and bunny
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B. Visual Results

Figure 1.: Phong and cartoon shading

Figure 2.: Greyscaling with phong and cartoon shading

Figure 3.: Sephia with phong and cartoon shading
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B. Visual Results

Figure 4.: Color selection with phong and cartoon shading

Figure 5.: Edge enhancement (Sobel filter) with phong and cartoon shading

Figure 6.: Edge enhancement (FreiChen filter) with phong and cartoon shading
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Figure 7.: Silhouette drawing with phong and cartoon shading

Figure 8.: Focus and context effect with phong and cartoon shading
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Sbert: Post-processing NPR Effects for Video Games. In Proceedings of the
12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum
and Its Applications in Industry, VRCAI ’13, pages 147–156, New York, NY,
USA, 2013. ACM.
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